Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 344, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221624

RESUMO

BACKGROUND: As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS: We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS: Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS: Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.


Assuntos
Sepse , Choque Séptico , Humanos , Histonas , Estado Terminal , Prognóstico , Diagnóstico Precoce , Espectrometria de Massas
2.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768905

RESUMO

Disseminated Intravascular Coagulation (DIC) is a type of tissue and organ dysregulation in sepsis, due mainly to the effect of the inflammation on the coagulation system. Unfortunately, the underlying molecular mechanisms that lead to this disorder are not fully understood. Moreover, current biomarkers for DIC, including biological and clinical parameters, generally provide a poor diagnosis and prognosis. In recent years, non-coding RNAs have been studied as promising and robust biomarkers for a variety of diseases. Thus, their potential in the diagnosis and prognosis of DIC should be further studied. Specifically, the relationship between the coagulation cascade and non-coding RNAs should be established. In this review, microRNAs, long non-coding RNAs, and circular RNAs are studied in relation to DIC. Specifically, the axis between these non-coding RNAs and the corresponding affected pathway has been identified, including inflammation, alteration of the coagulation cascade, and endothelial damage. The main affected pathway identified is PI3K/AKT/mTOR axis, where several ncRNAs participate in its regulation, including miR-122-5p which is sponged by circ_0005963, ciRS-122, and circPTN, and miR-19a-3p which is modulated by circ_0000096 and circ_0063425. Additionally, both miR-223 and miR-24 were found to affect the PI3K/AKT pathway and were regulated by lncGAS5 and lncKCNQ1OT1, respectively. Thus, this work provides a useful pipeline of inter-connected ncRNAs that future research on their impact on DIC can further explore.


Assuntos
Coagulação Intravascular Disseminada , MicroRNAs , Sepse , Humanos , Coagulação Intravascular Disseminada/genética , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Sepse/complicações , Sepse/genética , Inflamação/genética
3.
Front Immunol ; 14: 1333705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235139

RESUMO

Introduction: Sepsis patients experience a complex interplay of host pro- and anti-inflammatory processes which compromise the clinical outcome. Despite considering the latest clinical and scientific research, our comprehension of the immunosuppressive events in septic episodes remains incomplete. Additionally, a lack of data exists regarding the role of epigenetics in modulating immunosuppression, subsequently impacting patient survival. Methods: To advance the current understanding of the mechanisms underlying immunosuppression, in this study we explored the dynamics of DNA methylation using the Infinium Methylation EPIC v1.0 BeadChip Kit in leukocytes from patients suffering from sepsis, septic shock, and critically ill patients as controls, within the first 24 h after admission in the Intensive Care Unit of a tertiary hospital. Results and discussion: Employing two distinct analysis approaches (DMRcate and mCSEA) in comparing septic shock and critically ill patients, we identified 1,256 differentially methylated regions (DMRs) intricately linked to critical immune system pathways. The examination of the top 100 differentially methylated positions (DMPs) between septic shock and critically ill patients facilitated a clear demarcation among the three patient groups. Notably, the top 6,657 DMPs exhibited associations with organ dysfunction and lactate levels. Among the individual genes displaying significant differential methylation, IL10, TREM1, IL1B, and TNFAIP8 emerged with the most pronounced methylation alterations across the diverse patient groups when subjected to DNA bisulfite pyrosequencing analysis. These findings underscore the dynamic nature of DNA methylation profiles, highlighting the most pronounced alterations in patients with septic shock, and revealing their close association with the disease.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/genética , Epigenoma , Estado Terminal , Sepse/genética , Sepse/diagnóstico , Fenótipo , Leucócitos , Terapia de Imunossupressão
4.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552833

RESUMO

NETosis is a key host immune process against a pathogenic infection during innate immune activation, consisting of a neutrophil "explosion" and, consequently, NET formation, containing mainly DNA, histones, and other nuclear proteins. During sepsis, an exacerbated immune host response to an infection occurs, activating the innate immunity and NETosis events, which requires histone H3 citrullination. Our group compared the circulating histone levels with those citrullinated H3 levels in plasma samples of septic patients. In addition, we demonstrated that citrullinated histones were less cytotoxic for endothelial cells than histones without this post-translational modification. Citrullinated histones did not affect cell viability and did not activate oxidative stress. Nevertheless, citrullinated histones induced an inflammatory response, as well as regulatory endothelial mechanisms. Furthermore, septic patients showed elevated levels of circulating citrullinated histone H3, indicating that the histone citrullination is produced during the first stages of sepsis, probably due to the NETosis process.


Assuntos
Armadilhas Extracelulares , Sepse , Humanos , Histonas/metabolismo , Citrulinação , Armadilhas Extracelulares/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Sepse/metabolismo , Endotélio/metabolismo
5.
Prog Cardiovasc Dis ; 68: 70-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34265333

RESUMO

The mechanisms occurring during sepsis that produce an increased risk of cardiovascular (CV) disease (CVD) are poorly understood. Even less information exists regarding CV dysfunction as a complication of sepsis, particularly for sepsis-induced cardiomyopathy. However, recent research has demonstrated that non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, play a crucial role in genetic reprogramming, gene regulation, and inflammation during the development of CVD. Here we describe experimental findings showing the importance of non-coding RNAs mediating relevant mechanisms underlying CV dysfunction after sepsis, so contributing to sepsis-induced cardiomyopathy. Importantly, non-coding RNAs are critical novel regulators of CVD risk factors. Thus, they are potential candidates to improve diagnostics and prognosis of sepsis-induced cardiomyopathy and other CVD events occurring after sepsis and set the basis to design novel therapeutic strategies.


Assuntos
Cardiomiopatias/etiologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , Sepse/complicações , Animais , Biomarcadores/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Fatores de Risco de Doenças Cardíacas , Humanos , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Medição de Risco , Sepse/genética , Sepse/metabolismo
6.
Cells ; 9(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630422

RESUMO

Sepsis is a life-threatening condition that occurs when the body responds to an infection that damages it is own tissues. The major problem in sepsis is rapid, vital status deterioration in patients, which can progress to septic shock with multiple organ failure if not properly treated. As there are no specific treatments, early diagnosis is mandatory to reduce high mortality. Despite more than 170 different biomarkers being postulated, early sepsis diagnosis and prognosis remain a challenge for clinicians. Recent findings propose that circular RNAs (circRNAs) may play a prominent role in regulating the patients' immune system against different pathogens, including bacteria and viruses. Mounting evidence also suggests that the misregulation of circRNAs is an early event in a wide range of diseases, including sepsis. Despite circRNA levels being altered in sepsis, the specific mechanisms controlling the dysregulation of these noncoding RNAs are not completely elucidated, although many factors are known to affect circRNA biogenesis. Therefore, there is a need to explore the molecular pathways that lead to this disorder. This review describes the role of this new class of regulatory RNAs in sepsis and the feasibility of using circRNAs as diagnostic biomarkers for sepsis, opening up new avenues for circRNA-based medicine.


Assuntos
Processamento Alternativo/genética , Biomarcadores/metabolismo , RNA Circular/metabolismo , Sepse/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...