Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895578

RESUMO

While macroinvertebrate dispersal operates at the individual level, predictions of their dispersal capabilities often rely on indirect proxies rather than direct measurements. To gain insight into the dispersal of individual specimens, it is crucial to mark (label) and capture individuals. Isotopic enrichment with 15N is a non-invasive method with the potential of labelling large quantities of macroinvertebrates. While the analysis of 15N is widely utilised in food web studies, knowledge on the specific utility of isotopic enrichment with 15N for mass labelling of macroinvertebrate individuals across different taxa and feeding types is limited. Previous studies have focused on single species and feeding types, leaving gaps in our understanding of the broader applicability of this method. Therefore, this study aimed to test and compare isotopic mass enrichment across several macroinvertebrate taxa and feeding types. We released 15NH4Cl at five stream reaches in North-Rhine Westphalia, Germany, and successfully enriched 12 distinct macroinvertebrate taxa (Crustacea and Insecta). Significant enrichment was achieved in active and passive filter feeders, grazers, shredders and predators, and predominantly showed positive correlations with the enrichment of the taxa's main food sources phytobenthos and particulate organic matter. Enrichment levels rose rapidly and peaked at distances between 50 m and 300 m downstream of the isotopic inlet; significant enrichment occurred up to 2000 m downstream of the isotopic inlet in all feeding types. Macroinvertebrate density estimates on the stream bottom averaged to a total of approximately 3.4 million labelled individuals of the 12 investigated taxa, thus showing the high potential of isotopic (15N) enrichment as a non-invasive method applicable for mass labelling across different macroinvertebrate feeding types. Hence, isotopic enrichment can greatly assist the analysis of macroinvertebrate dispersal through mark-and-recapture experiments, as it allows to measure the movement at the level of individual specimens.

2.
Environ Sci Pollut Res Int ; 31(20): 29886-29901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589590

RESUMO

Numerous low-income groups and rural communities depend on fish as an inexpensive protein source worldwide, especially in developing countries. These communities are constantly exposed to various pollutants when they frequently consume polluted fish. The largest river basin in South Africa is the Orange-Vaal River basin, and several anthropogenic impacts, especially gold mining activities and industrial and urban effluents, affect this basin. The Department of Environment, Forestry and Fisheries in South Africa has approved the much-anticipated National Freshwater (Inland) Wild Capture Fisheries Policy in 2021. The aims of this study were (1) to analyze element concentrations in the widely distributed Clarias gariepinus from six sites from the Orange-Vaal River basin and (2) to determine the carcinogenic and non-carcinogenic human health risks associated with fish consumption. The bioaccumulation of eight potentially toxic elements (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) was assessed in C. gariepinus from sites with different anthropogenic sources. The human health risks were determined to assess the potential risks posed by consuming contaminated C. gariepinus from these sites. Carcinogenic health risks were associated with fish consumption, where it ranged between 21 and 75 out of 10,000 people having the probability to develop cancer from As exposure. The cancer risk between the sites ranged between 1 and 7 out of 10,000 people to developing cancer from Cr exposure. A high probability of adverse non-carcinogenic health risks is expected if the hazard quotient (HQ) is higher than one. The HQ in C. gariepinus from the six sites ranged between 1.5 and 5.6 for As, while for Hg, it was between 1.8 and 5.1. These results highlight the need for monitoring programs of toxic pollutants in major river systems and impoundments in South Africa, especially with the new fisheries policy, as there are possible human health risks associated with the consumption of contaminated fish.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , África do Sul , Rios/química , Poluentes Químicos da Água/análise , Humanos , Animais , Saúde Única , Medição de Risco , Peixes
3.
Trends Parasitol ; 39(9): 749-759, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451950

RESUMO

Wild animals are usually infected with parasites that can alter their hosts' trophic niches in food webs as can be seen from stable isotope analyses of infected versus uninfected individuals. The mechanisms influencing these effects of parasites on host isotopic values are not fully understood. Here, we develop a conceptual model to describe how the alteration of the resource intake or the internal resource use of hosts by parasites can lead to differences of trophic and isotopic niches of infected versus uninfected individuals and ultimately alter resource flows through food webs. We therefore highlight that stable isotope studies inferring trophic positions of wild organisms in food webs would benefit from routine identification of their infection status.


Assuntos
Parasitos , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Cadeia Alimentar , Animais Selvagens
4.
Parasite ; 30: 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350678

RESUMO

Although interest in Acanthocephala seems to have reached only a small community of researchers worldwide, we show in this opinion article that this group of parasites is composed of excellent model organisms for studying key questions in parasite molecular biology and cytogenetics, evolutionary ecology, and ecotoxicology. Their shared ancestry with free-living rotifers makes them an ideal group to explore the origins of the parasitic lifestyle and evolutionary drivers of host shifts and environmental transitions. They also provide useful features in the quest to decipher the proximate mechanisms of parasite-induced phenotypic alterations and better understand the evolution of behavioral manipulation. From an applied perspective, acanthocephalans' ability to accumulate contaminants offers useful opportunities to monitor the impacts - and evaluate the possible mitigation - of anthropogenic pollutants on aquatic fauna and develop the environmental parasitology framework. However, exploring these exciting research avenues will require connecting fragmentary knowledge by enlarging the taxonomic coverage of molecular and phenotypic data. In this opinion paper, we highlight the needs and opportunities of research on Acanthocephala in three main directions: (i) integrative taxonomy (including non-molecular tools) and phylogeny-based comparative analysis; (ii) ecology and evolution of life cycles, transmission strategies and host ranges; and (iii) environmental issues related to global changes, including ecotoxicology. In each section, the most promising ideas and developments are presented based on selected case studies, with the goal that the present and future generations of parasitologists further explore and increase knowledge of Acanthocephala.


Title: Accrocher la communauté scientifique à des vers à la tête pleine d'épines : faits intéressants et passionnants, lacunes dans les connaissances et perspectives pour des orientations de recherche sur les Acanthocéphales. Abstract: Bien que l'intérêt pour les acanthocéphales semble n'avoir atteint qu'un petit nombre de chercheurs dans le monde, nous montrons dans cet article que ce groupe de parasites est composé d'excellents organismes modèles pour étudier les questions en suspens en biologie moléculaire et cytogénétique, écologie évolutive et écotoxicologie. Leur ascendance partagée avec les rotifères en fait un groupe idéal pour explorer les origines du mode de vie parasitaire et les moteurs évolutifs des changements d'hôtes et des transitions environnementales. Ils présentent également des caractéristiques intéressantes pour l'étude des mécanismes proximaux sous-tendant les altérations phénotypiques induites par les parasites, et ainsi mieux comprendre l'évolution de la manipulation comportementale. D'un point de vue appliqué, la capacité des acanthocéphales à accumuler les contaminants offre des opportunités utiles pour surveiller les impacts - et évaluer les possibilités d'atténuation - des pollutions anthropiques sur la faune aquatique et développer le domaine de la parasitologie environnementale. Cependant, l'exploration de ces pistes de recherche passionnantes nécessitera de relier des connaissances fragmentaires en élargissant la couverture taxonomique des données moléculaires et phénotypiques. Dans cet article, nous présentons l'état actuel de la recherche sur les acanthocéphales selon trois axes principaux : (i) la taxonomie intégrative (y compris les outils non-moléculaires) et la phylogénie à des fins d'analyse comparative ; (ii) l'écologie et l'évolution des cycles de vie, des stratégies d'exploitation des hôtes et de transmission ; (iii) les questions environnementales liées aux changements globaux, y compris l'écotoxicologie. Dans chaque section, nous soulignons les besoins et les opportunités, en espérant que cela incitera une nouvelle génération de parasitologues à s'intéresser aux acanthocéphales.


Assuntos
Acantocéfalos , Parasitos , Rotíferos , Animais , Acantocéfalos/genética , Filogenia
5.
Trends Parasitol ; 39(6): 461-474, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37061443

RESUMO

Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.


Assuntos
Parasitos , Animais , Parasitos/fisiologia , Ecossistema , Organismos Aquáticos
6.
Sci Rep ; 13(1): 1054, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658208

RESUMO

Stable isotope analysis of individual compounds is emerging as a powerful tool to study nutrient origin and conversion in host-parasite systems. We measured the carbon isotope composition of amino acids and glucose in the cestode Schistocephalus solidus and in liver and muscle tissues of its second intermediate host, the three-spined stickleback (Gasterosteus aculeatus), over the course of 90 days in a controlled infection experiment. Similar linear regressions of δ13C values over time and low trophic fractionation of essential amino acids indicate that the parasite assimilates nutrients from sources closely connected to the liver metabolism of its host. Biosynthesis of glucose in the parasite might occur from the glucogenic precursors alanine, asparagine and glutamine and with an isotope fractionation of - 2 to - 3 ‰ from enzymatic reactions, while trophic fractionation of glycine, serine and threonine could be interpreted as extensive nutrient conversion to fuel parasitic growth through one-carbon metabolism. Trophic fractionation of amino acids between sticklebacks and their diets was slightly increased in infected compared to uninfected individuals, which could be caused by increased (immune-) metabolic activities due to parasitic infection. Our results show that compound-specific stable isotope analysis has unique opportunities to study host and parasite physiology.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Parasitos , Smegmamorpha , Animais , Humanos , Infecções por Cestoides/parasitologia , Isótopos de Carbono , Carbono , Aminoácidos , Cestoides/fisiologia , Smegmamorpha/parasitologia , Nutrientes , Interações Hospedeiro-Parasita , Doenças dos Peixes/parasitologia
7.
Sci Total Environ ; 859(Pt 2): 160185, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395831

RESUMO

The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.


Assuntos
Poluentes Ambientais , Oligoquetos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água , Acetilcolinesterase , Ecotoxicologia , Metais/análise , Sedimentos Geológicos
8.
Mar Pollut Bull ; 184: 114110, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126479

RESUMO

Environmental parasitology developed as a discipline that addresses the impact of anthropogenic activities related to the occurrence and abundance of parasites, subsequently relating deviations of natural parasite distribution to environmental impact. Metals, often considered pollutants, might occur under natural conditions, where concentrations might be high due to a natural geogenic release rather than anthropogenic activities. We specifically investigated whether naturally occurring high levels of elements might negatively affect the parasite community of the intertidal klipfish, Clinus superciliosus, at different localities along the South African coast. Parasite communities and element concentrations of 55 klipfish (in muscle and liver) were examined. Our results show that parasites can disentangle anthropogenic input of elements from naturally occurring high element concentrations. Acanthocephala, Cestoda and Isopoda were associated with higher concentrations of most elements. Environmental parasitology, applicable to a wide range of systems, is scarcely used on marine ecosystems and can contribute to environmental monitoring programs.


Assuntos
Poluentes Ambientais , Parasitos , Animais , Ecossistema , Efeitos Antropogênicos , Monitoramento Ambiental/métodos
9.
Parasitology ; 149(14): 1822-1828, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35993340

RESUMO

Interest in local environmental conditions and the occurrence and behaviour of parasites has increased over the last 3 decades, leading to the discipline of Environmental Parasitology. The aim of this discipline is to investigate how anthropogenically altered environmental factors influence the occurrence of parasites and how the combined effects of pollutants and parasites affect the health of their hosts. Accordingly, in this paper, we provide an overview of the direct and indirect effects of pollutants on the occurrence and distribution of fish parasites. However, based on current knowledge, it is difficult to draw general conclusions about these interdependencies, as the effects of pollutants on free-living (larval) parasite stages, as well as their effects on ectoparasites, depend on the pollutant­host­parasite combination as well as on other environmental factors that can modulate the harmful effects of pollutants. Furthermore, the question of the combined effects of the simultaneous occurrence of parasites and pollutants on the physiology and health of the fish hosts is of interest. For this purpose, we differentiate between the dominance effects of individual stressors over other, additive or synergistically reinforcing effects as well as combined antagonistic effects. For the latter, there are only very few studies, most of which were also carried out on invertebrates, so that this field of research presents itself as very promising for future investigations.


Assuntos
Poluentes Ambientais , Doenças dos Peixes , Parasitos , Animais , Peixes/parasitologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita
10.
Sci Rep ; 12(1): 11690, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804029

RESUMO

Interpretation of stable isotope data is of upmost importance in ecology to build sound models for the study of animal diets, migration patterns and physiology. However, our understanding of stable isotope fractionation and incorporation into consumer tissues is still limited. We therefore measured the δ13C values of individual amino acids over time from muscle and liver tissue of three-spined sticklebacks (Gasterosteus aculeatus) on a high protein diet. The δ13C values of amino acids in the liver quickly responded to small shifts of under ± 2.0‰ in dietary stable isotope compositions on 30-day intervals. We found on average no trophic fractionation in pooled essential (muscle, liver) and non-essential (muscle) amino acids. Negative Δδ13C values of - 0.7 ± 1.3‰ were observed for pooled non-essential (liver) amino acids and might indicate biosynthesis from small amounts of dietary lipids. Trophic fractionation of individual amino acids is reported and discussed, including unusual Δδ13C values of over + 4.9 ± 1.4‰ for histidine. Arginine and lysine showed the lowest trophic fractionation on individual sampling days and might be useful proxies for dietary sources on short time scales. We suggest further investigations using isotopically enriched materials to facilitate the correct interpretation of ecological field data.


Assuntos
Aminoácidos , Smegmamorpha , Aminoácidos/metabolismo , Animais , Isótopos de Carbono/metabolismo , Fracionamento Químico , Dieta , Isótopos de Nitrogênio/metabolismo , Smegmamorpha/metabolismo
11.
ACS Nano ; 16(7): 11011-11026, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35737452

RESUMO

Gold nanorods (AuNRs) are promising agents for diverse biomedical applications such as drug and gene delivery, bioimaging, and cancer treatment. Upon in vivo application, AuNRs quickly interact with cells of the immune system. On the basis of their strong intrinsic phagocytic activity, polymorphonuclear neutrophils (PMNs) are specifically equipped for the uptake of particulate materials such as AuNRs. Therefore, understanding the interaction of AuNRs with PMNs is key for the development of safe and efficient therapeutic applications. In this study, we investigated the uptake, intracellular processing, and cell biological response induced by AuNRs in PMNs. We show that uptake of AuNRs mainly occurs via phagocytosis and macropinocytosis with rapid deposition of AuNRs in endosomes within 5 min. Within 60 min, AuNR uptake induced an unfolded protein response (UPR) along with induction of inositol-requiring enzyme 1 α (IREα) and features of endoplasmic reticulum (ER) stress. This early response was followed by a pro-inflammatory autocrine activation loop that involves LOX1 upregulation on the cell surface and increased secretion of IL8 and MMP9. Our study provides comprehensive mechanistic insight into the interaction of AuNRs with immune cells and suggests potential targets to limit the unwanted immunopathological activation of PMNs during application of AuNRs.


Assuntos
Ouro , Nanotubos , Humanos , Ouro/farmacologia , Neutrófilos , Estresse do Retículo Endoplasmático
12.
Aquat Toxicol ; 247: 106178, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489172

RESUMO

Physiologically based pharmacokinetic (PBPK) models have been applied to simulate the absorption, distribution, metabolism, and elimination of various toxicants in fish. This approach allows for considering metal accumulation in intestinal parasites. Unlike "semi" physiologically-based models developed for metals, metal accumulation in fish was characterised based on metal-specific parameters (the fraction in blood plasma and the tissue-blood partition coefficient) and physiological characteristics of the fish (the blood flow and the tissue weight) in our PBPK model. In the model, intestinal parasites were considered a sink of metals from the host intestine. The model was calibrated with data for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticolliis. Metal concentrations in this fish-parasite system were monitored in Ag and Co treatments in duplicate during a 48-day exposure phase (Ag and Co were added to tap water at concentrations of 1 and 2 µg/L, respectively) and a 51-day depuration phase. Their concentrations in the gills increased during the exposure phase and decreased in the depuration phase. A similar pattern was observed for Ag concentrations in other chub organs, while a relatively stable pattern for Co indicates regulations in the accumulation of essential metals by chubs. The metals were taken up by the acanthocephalans at similar rate constants. These results indicate that metal availability to parasites, which is determined by the internal distribution and fate, is critical to metal accumulation in the acanthocephalans. The high concentration of Ag in the liver as well as the high rate of Ag excretion from the liver to the intestine might contribute to higher concentrations of metals in the bile complexes in the intestine, which are available to the parasites, but not to the reabsorption by the host intestine. The opposite pattern might explain the lower availability of Co to the acanthocephalans.


Assuntos
Acantocéfalos , Cyprinidae , Doenças dos Peixes , Helmintíase Animal , Parasitos , Poluentes Químicos da Água , Acantocéfalos/metabolismo , Animais , Cyprinidae/metabolismo , Monitoramento Ambiental/métodos , Helmintíase Animal/metabolismo , Helmintíase Animal/parasitologia , Metais/metabolismo , Poluentes Químicos da Água/toxicidade
13.
Sci Total Environ ; 807(Pt 3): 151066, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673060

RESUMO

Heavy metals such as zinc cannot be degraded by microorganisms and form long contaminant plumes in groundwater. Conventional methods for remediating heavy metal-contaminated sites are for example excavation and pump-and-treat, which is expensive and requires very long operation times. This induced interest in new technologies such as in situ adsorption barriers for immobilization of heavy metal contamination. In this study, we present steps and criteria from laboratory tests to field studies, which are necessary for a successful implementation of an in situ adsorption barrier for immobilizing zinc. Groundwater and sediment samples from a contaminated site were brought to the lab, where the adsorption of zinc to Goethite nanoparticles was studied in batch and in flow-through systems mimicking field conditions. The Goethite nanoparticles revealed an in situ adsorption capacity of approximately 23 mg Zn per g Goethite. Transport experiments in sediment columns indicated an expected radius of influence of at least 2.8 m for the injection of Goethite nanoparticles. These findings were validated in a pilot-scale field study, where an in situ adsorption barrier of ca. 11 m × 6 m × 4 m was implemented in a zinc-contaminated aquifer. The injected nanoparticles were irreversibly deposited at the desired location within <24 h, and were not dislocated with the groundwater flow. Despite a constantly increasing inflow of zinc to the barrier and the short contact time between Goethite and zinc in the barrier, the dissolved zinc was effectively immobilized for ca. 90 days. Then, the zinc concentrations increased slowly downstream of the barrier, but the barrier still retained most of the zinc from the inflowing groundwater. The study demonstrated the applicability of Goethite nanoparticles to immobilize heavy metals in situ and highlights the criteria for upscaling laboratory-based determinants to field-scale.


Assuntos
Água Subterrânea , Zinco , Adsorção , Compostos Férricos , Laboratórios
14.
Aquat Toxicol ; 241: 106015, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34753109

RESUMO

A toxicokinetic-toxicodynamic model based on subcellular metal partitioning is presented for simulating chronic toxicity of copper (Cu) from the estimated concentration in the fraction of potentially toxic metal (PTM). As such, the model allows for considering the significance of different pathways of metal sequestration in predicting metal toxicity. In the metabolically available pool (MAP), excess metals above the metabolic requirements and the detoxification and elimination capacity form the PTM fraction. The reversibly and irreversibly detoxified fractions were distinguished in the biologically detoxified compartment, while responses of organisms were related to Cu accumulation in the PTM fraction. The model was calibrated using the data on Cu concentrations in subcellular fractions and physiological responses measured by the glutathione S-transferase activity and the lipid peroxidation level during 24-day exposure of the Zebra mussel to Cu at concentrations of 25 and 50 µg/L and varying Na+ concentrations up to 4.0 mmol/L. The model was capable of explaining dynamics in the subcellular Cu partitioning, e.g. the trade-off between elimination and detoxification as well as the dependence of net accumulation, elimination, detoxification, and metabolism on the exposure level. Increases in the net accumulation rate in the MAP contributed to increased concentrations of Cu in this fraction. Moreover, these results are indicative of ineffective detoxification at high exposure levels and spill-over effects of detoxification.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Metais , Toxicocinética , Poluentes Químicos da Água/toxicidade
15.
Mar Pollut Bull ; 172: 112852, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34419694

RESUMO

Clinus superciliosus was collected for element analysis from six localities along the South African west and south coasts. Concentrations in muscle and liver were determined, considering size and sex. No significant positive correlation between size and concentrations were detected, except for Mn and Sn in liver from Simons Town marina, while no significant differences in sex were detected. The majority of element concentrations were significantly higher in fish from Tsitsikamma in the Garden Route and the small town Chintsa, while some concentrations were significantly higher in muscle at Simons Town marina. Land-use activities had a limited role in element bioaccumulation in klipfish. Element concentrations were influenced by large scale oceanographic processes (currents; upwelling) and localised seasonal geogenic derived run-off. Limited data on element accumulation patterns of intertidal fish species in South Africa, highlights the need for long-term monitoring and further studies on different resident and transient intertidal fish species.


Assuntos
Metaloides , Perciformes , Animais , Peixes , Metais , África do Sul
16.
Environ Pollut ; 287: 117645, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426373

RESUMO

Chronic toxicity of copper (Cu) at sublethal levels is associated with ionoregulatory disturbance and oxidative stress. These factors were considered in a toxicokinetic-toxicodynamic model in the present study. The ionoregulatory disturbance was evaluated by the activity of the Na+/K+-ATPase enzyme (NKA), while oxidative stress was presented by lipid peroxidation (LPO) and glutathione-S-transferase (GST) activity. NKA activity was related to the binding of Cu2+ and Na + to NKA. LPO and GST activity were linked with the simulated concentration of unbound Cu. The model was calibrated using previously reported data and empirical data generated when zebra mussels were exposed to Cu. The model clearly demonstrated that Cu might inhibit NKA activity by reducing the number of functional pump sites and the limited Cu-bound NKA turnover rate. An ordinary differential equation was used to describe the relationship between the simulated concentration of unbound Cu and LPO/GST activity. Although this method could not explain the fluctuations in these biomarkers during the experiment, the measurements were within the confidence interval of estimations. Model simulation consistently shows non-significant differences in LPO and GST activity at two exposure levels, similar to the empirical observation.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Cobre/análise , Cobre/toxicidade , Homeostase , Peroxidação de Lipídeos , Estresse Oxidativo , Toxicocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Adv Mater ; 33(31): e2101549, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165866

RESUMO

Fully inorganic, colloidal gold nanoclusters (NCs) constitute a new class of nanomaterials that are clearly distinguishable from their commonly studied metal-organic ligand-capped counterparts. As their synthesis by chemical methods is challenging, details about their optical properties remain widely unknown. In this work, laser fragmentation in liquids is performed to produce fully inorganic and size-controlled colloidal gold NCs with monomodal particle size distributions and an fcc-like structure. Results reveal that these NCs exhibit highly pronounced photoluminescence with quantum yields of 2%. The emission behavior of small (2-2.5 nm) and ultrasmall (<1 nm) NCs is significantly different and dominated by either core- or surface-based emission states. It is further verified that emission intensities are a function of the surface charge density, which is easily controllable by the pH of the surrounding medium. This experimentally observed correlation between surface charge and photoluminescence emission intensity is confirmed by density functional theoretical simulations, demonstrating that fully inorganic NCs provide an appropriate material to bridge the gap between experimental and computational studies of NCs. The presented study deepens the understanding of electronic structures in fully inorganic colloidal gold NCs and how to systematically tune their optical properties via surface charge density and particle size.

18.
Environ Pollut ; 286: 117284, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984780

RESUMO

Mining activities in the world's largest platinum mining area in South Africa have resulted in environmental contamination with Pt (e.g., the Hex River's vicinity). The present study compared a Pt mining area with a non-mining area along this river in terms of (1) metal concentrations in different grain size fractions from soils and aquatic sediments; (2) the toxicological potential of aquatic sediments based on the Consensus-Based Sediment Quality Guideline (CBSQG); and (3) the chronic toxicity of aqueous eluates from soils and sediments to Caenorhabditis elegans. Platinum concentrations were higher in the mining area than in the non-mining area. For most metals, the sediment silt and clay fraction contained the highest metal concentrations. Based on the CBSQG, most sampling sites exhibited a high toxicological potential, driven by Cr and Ni. Eluate toxicity testing revealed that C. elegans growth, fertility, and reproduction inhibition were not dependent on mining activities or the CBSQG predictions. Toxicity was instead likely due to Cd, Fe, Mn, Ni, Pt, and Pb. In conclusion, the investigated region is loaded with a high geogenic background resulting in high reproduction inhibition. The mining activities lead to additional environmental metal contamination (particularly Pt), contributing to environmental soil and sediment toxicity.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Caenorhabditis elegans , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Metais Pesados/toxicidade , Platina/toxicidade , Rios , Solo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Sci Rep ; 11(1): 3440, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564005

RESUMO

Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.


Assuntos
Comportamento Animal , Infecções Oculares Parasitárias , Doenças dos Peixes , Preferências Alimentares , Percas/parasitologia , Trematódeos , Infecções por Trematódeos , Animais , Infecções Oculares Parasitárias/parasitologia , Infecções Oculares Parasitárias/veterinária , Doenças dos Peixes/parasitologia , Doenças dos Peixes/fisiopatologia , Infecções por Trematódeos/fisiopatologia , Infecções por Trematódeos/veterinária
20.
Chemosphere ; 267: 129278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33341731

RESUMO

The stenohaline zebra mussel, Dreissena polymorpha, is uniquely sensitive to the ionic composition of its aquatic environment. Waterborne copper (Cu) uptake and accumulation in zebra mussels were examined at various conditions in an environmentally relevant range in freshwater, i.e. Cu exposure levels (nominal concentrations of 25 and 50 µg/L), pH (5.8-8.3), and sodium (Na+) concentrations (up to 4.0 mM). Copper accumulation was simulated by a kinetic model covering two compartments, the gills and the remaining tissues. The Cu uptake rate constant decreased with decreasing pH from 8.3 down to 6.5, indicating interactions between H+ and Cu at uptake sites. The kinetic simulation showed dose-dependent effects of Na+ on Cu uptake. At 25 µg/L Cu, addition of Na+ at 0.5 mM significantly inhibited the Cu uptake rate, while no significant differences were found in the uptake rate upon further addition of Na+ up to a concentration of 4.0 mM. At 50 µg/L Cu, the Cu uptake rate was not influenced by Na+ addition. Calibration results exhibited dose-dependent elimination rates with more profound elimination with increasing exposure levels. With kinetic parameters calibrated at environmentally relevant conditions, in terms of pH and Na+ concentrations, the model performed well in predicting Cu accumulation based on independent data sets. Estimates of the Cu concentration in mussels were within a factor of 2 of the measurements. This demonstrates potential application of kinetic models that are calibrated in environmentally relevant freshwater conditions.


Assuntos
Dreissena , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Concentração de Íons de Hidrogênio , Sódio , Toxicocinética , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...