Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 42(3): 390-400, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549315

RESUMO

Altered mitochondrial functionality can extend organism life span, but the underlying mechanisms are obscure. Here we report that inactivating SOV1, a member of the yeast mitochondrial translation control (MTC) module, causes a robust Sir2-dependent extension of replicative life span in the absence of respiration and without affecting oxidative damage. We found that SOV1 interacts genetically with the cAMP-PKA pathway and the chromatin remodeling apparatus. Consistently, Sov1p-deficient cells displayed reduced cAMP-PKA signaling and an elevated, Sir2p-dependent, genomic silencing. Both increased silencing and life span extension in sov1Δ cells require the PKA/Msn2/4p target Pnc1p, which scavenges nicotinamide, a Sir2p inhibitor. Inactivating other members of the MTC module also resulted in Sir2p-dependent life span extension. The data demonstrate that the nuclear silencing apparatus senses and responds to the absence of MTC proteins and that this response converges with a pathway for life span extension elicited by reducing TOR signaling.


Assuntos
Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Western Blotting , Divisão Celular/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Proteínas Mitocondriais/metabolismo , Mutação , Nicotinamidase/genética , Nicotinamidase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Fatores de Tempo , Fatores de Transcrição
2.
J Mol Biol ; 380(2): 340-50, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18514734

RESUMO

Universal stress proteins (Usps) are found in all kingdoms of life and can be divided into four classes by phylogenic analysis. According to available structures, Usps exist as homodimers, and genetic studies show that their cellular assignments are extensive, including functions relating to stress resistance, carbon metabolism, cellular adhesion, motility, and bacterial virulence. We approached the question of how Usps can achieve such a variety of functions in a cell by using a new procedure for statistical analysis of multiple sequence alignments, based on physicochemically related values for each amino acid residue of Usp dimer interfaces. The results predicted that Usp proteins within a class may, in addition to forming homodimers, be able to form heterodimers. Using Escherichia coli Usps as model proteins, we confirmed the existence of such interactions. We especially focused on class I UspA and UspC and demonstrated that they are able to form homo- and heterodimers in vitro and in vivo. We suggest that this ability to form both homo- and heterodimers may allow for an expansion of the functional repertoire of Usps and explains why organisms usually contain multiple usp paralogues.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Dimerização , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/classificação , Proteínas de Choque Térmico/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Análise de Sequência de Proteína , Técnicas do Sistema de Duplo-Híbrido
3.
Aging Cell ; 7(2): 148-57, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18081742

RESUMO

Cells with overactive RAS/protein kinase A (PKA) signaling, such as RAS2(Val19) cells, exhibit reduced proliferation rates and accelerated replicative senescence. We show here that the extended generation time of RAS2(Val19)cells is the result of abrogated ATP/ADP carrier activity of the mitochondria. Both PKA-dependent and independent routes are responsible for inhibiting ATP/ADP exchange in the RAS-overactive cells. The reduced carrier activity is due, at least in part, to elevated levels of reactive oxygen species (ROS), which also cause a proteolysis-dependent fragmentation of the Aac2p carrier both in vivo and on isolated mitochondria. Attenuated carrier activity is suppressed by overproducing the superoxide dismutase, Sod1p, and this enhances both the proliferation rate and the replicative longevity of RAS2(Val19) cells. In contrast, overproducing functional Aac2p restored proliferation but not longevity of RAS2(Val19) cells. Thus, Ras signaling affects proliferation rate and replicative lifespan by two different, ROS-dependent, routes. While the reduction in generation time is linked to the inactivation, specifically, of the mitochondrial nucleotide carrier, longevity is affected by other, and hitherto unknown, target(s) of ROS attack.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas ras/metabolismo , Proliferação de Células , Senescência Celular , Regulação para Baixo , Ativação Enzimática , Engenharia Genética , Translocases Mitocondriais de ADP e ATP/biossíntese , Translocases Mitocondriais de ADP e ATP/deficiência , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mutantes , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Transdução de Sinais , Superóxido Dismutase/biossíntese , Proteínas ras/genética
4.
J Bacteriol ; 187(18): 6265-72, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16159758

RESUMO

The universal stress protein (UspA) superfamily encompasses a conserved group of proteins that are found in bacteria, archaea, and eukaryotes. Escherichia coli harbors six usp genes--uspA, -C, -D, -E, -F, and -G--the expression of which is triggered by a large variety of environmental insults. The uspA gene is important for survival during cellular growth arrest, but the exact physiological role of the Usp proteins is not known. In this work we have performed phenotypic characterization of mutants with deletions of the six different usp genes. We report on hitherto unknown functions of these genes linked to motility, adhesion, and oxidative stress resistance, and we show that usp functions are both overlapping and distinct. Both UspA and UspD are required in the defense against superoxide-generating agents, and UspD appears also important in controlling intracellular levels of iron. In contrast, UspC is not involved in stress resistance or iron metabolism but is essential, like UspE, for cellular motility. Electron microscopy demonstrates that uspC and uspE mutants are devoid of flagella. In addition, the function of the uspC and uspE genes is linked to cell adhesion, measured as FimH-mediated agglutination of yeast cells. While the UspC and UspE proteins promote motility at the expense of adhesion, the UspF and UspG proteins exhibit the exact opposite effects. We suggest that the Usp proteins have evolved different physiological functions that reprogram the cell towards defense and escape during cellular stress.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/fisiologia , Escherichia coli/fisiologia , Proteínas de Choque Térmico/fisiologia , Estresse Oxidativo/fisiologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Óperon
5.
J Biol Chem ; 278(40): 38352-9, 2003 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12876288

RESUMO

Biosynthesis of iron-sulfur clusters (Fe-S) depends on multiprotein systems. Recently, we described the SUF system of Escherichia coli and Erwinia chrysanthemi as being important for Fe-S biogenesis under stressful conditions. The SUF system is made of six proteins: SufC is an atypical cytoplasmic ABC-ATPase, which forms a complex with SufB and SufD; SufA plays the role of a scaffold protein for assembly of iron-sulfur clusters and delivery to target proteins; SufS is a cysteine desulfurase which mobilizes the sulfur atom from cysteine and provides it to the cluster; SufE has no associated function yet. Here we demonstrate that: (i) SufE and SufS are both cystosolic as all members of the SUF system; (ii) SufE is a homodimeric protein; (iii) SufE forms a complex with SufS as shown by the yeast two-hybrid system and by affinity chromatography; (iv) binding of SufE to SufS is responsible for a 50-fold stimulation of the cysteine desulfurase activity of SufS. This is the first example of a two-component cysteine desulfurase enzyme.


Assuntos
Proteínas de Bactérias/fisiologia , Liases de Carbono-Enxofre , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/fisiologia , Liases/química , Liases/fisiologia , Alanina/química , Cromatografia , Cromatografia em Gel , Cisteína/farmacologia , Citosol/metabolismo , Dickeya chrysanthemi/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Immunoblotting , Cinética , Modelos Biológicos , Modelos Químicos , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Ligação Proteica , Selenocisteína/farmacologia , Frações Subcelulares , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
6.
Curr Opin Microbiol ; 6(2): 140-5, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12732303

RESUMO

The universal stress protein A (UspA) superfamily encompasses an ancient and conserved group of proteins that are found in bacteria, Archea, fungi, flies and plants. The Escherichia coli UspA is produced in response to a large number of different environmental onslaughts and UspA is one of the most abundant proteins in growth-arrested cells. Although insights into the regulation of the E. coli uspA gene have been gained, the exact roles of the Usp proteins and Usp domains remain enigmatic; they appear, in some cases, to be linked to resistance to DNA-damaging agents and to respiratory uncouplers.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Fatores Biológicos/classificação , Fatores Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/química , Modelos Genéticos
7.
J Biol Chem ; 278(20): 17993-8001, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12637501

RESUMO

SufA is a component of the recently discovered suf operon, which has been shown to play an important function in bacteria during iron-sulfur cluster biosynthesis and resistance to oxidative stress. The SufA protein from Erwinia chrysanthemi, a Gram-negative plant pathogen, has been purified to homogeneity and characterized. It is a homodimer with the ability to assemble rather labile [2Fe-2S] and [4Fe-4S] clusters as shown by Mössbauer spectroscopy. These clusters can be transferred to apoproteins such as ferredoxin or biotin synthase during a reaction that is not inhibited by bathophenanthroline, an iron chelator. Cluster assembly in these proteins is much more efficient when iron and sulfur are provided by holoSufA than by free iron sulfate and sodium sulfide. We propose the function of SufA is that of a scaffold protein for [Fe-S] cluster assembly and compare it to IscA, a member of the isc operon also involved in cluster biosynthesis in both prokaryotes and eukaryotes. Mechanistic and physiological implications of these results are also discussed.


Assuntos
Dickeya chrysanthemi/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/fisiologia , Sequência de Aminoácidos , Biotina/química , Clonagem Molecular , Dimerização , Ferredoxinas/química , Ferro/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Fenantrolinas/química , Plasmídeos/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectroscopia de Mossbauer , Sulfetos/metabolismo , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/fisiologia , Fatores de Tempo , Raios Ultravioleta
8.
EMBO J ; 22(3): 427-37, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12554644

RESUMO

Proteins containing [Fe-S] clusters perform essential functions in all domains of life. Previously, we identified the sufABCDSE operon as being necessary for virulence of the plant pathogen Erwinia chrysanthemi. In addition, we collected preliminary evidence that the sufABCDSE operon might be involved in the assembly of [Fe-S] clusters. Of particular interest are the sufB, sufC and sufD genes, which are conserved among Eubacteria, Archaea, plants and parasites. The present study establishes SufC as an unorthodox ATPase of the ABC superfamily that is located in the cytosol, wherein it interacts with both SufB and SufD. Moreover, under oxidative stress conditions, SufC was found to be necessary for the activity of enzymes containing oxygen-labile [Fe-S] clusters, but dispensable for glutamate synthase, which contains an oxidatively stable [Fe-S] cluster. Lastly, we have shown SufBCD to be essential for iron acquisition via chrysobactin, a siderophore of major importance in virulence. We discuss a model wherein the SufBCD proteins contribute to bacterial pathogenicity via their role in the assembly of [Fe-S] clusters under oxidative stress and iron limitation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Estresse Oxidativo , Enxofre/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Fracionamento Celular , Citoplasma/química , Citoplasma/metabolismo , Dickeya chrysanthemi/metabolismo , Proteínas Ferro-Enxofre/genética , Família Multigênica , Óperon , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...