Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8017): 712-719, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839957

RESUMO

Genetic screens have transformed our ability to interrogate cellular factor requirements for viral infections1,2, but most current approaches are limited in their sensitivity, biased towards early stages of infection and provide only simplistic phenotypic information that is often based on survival of infected cells2-4. Here, by engineering human cytomegalovirus to express single guide RNA libraries directly from the viral genome, we developed virus-encoded CRISPR-based direct readout screening (VECOS), a sensitive, versatile, viral-centric approach that enables profiling of different stages of viral infection in a pooled format. Using this approach, we identified hundreds of host dependency and restriction factors and quantified their direct effects on viral genome replication, viral particle secretion and infectiousness of secreted particles, providing a multi-dimensional perspective on virus-host interactions. These high-resolution measurements reveal that perturbations altering late stages in the life cycle of human cytomegalovirus (HCMV) mostly regulate viral particle quality rather than quantity, establishing correct virion assembly as a critical stage that is heavily reliant on virus-host interactions. Overall, VECOS facilitates systematic high-resolution dissection of the role of human proteins during the infection cycle, providing a roadmap for in-depth study of host-herpesvirus interactions.


Assuntos
Sistemas CRISPR-Cas , Infecções por Citomegalovirus , Citomegalovirus , Interações Hospedeiro-Patógeno , RNA Guia de Sistemas CRISPR-Cas , Replicação Viral , Humanos , Linhagem Celular , Sistemas CRISPR-Cas/genética , Citomegalovirus/genética , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Liberação de Vírus/genética , Replicação Viral/genética
2.
Animal Model Exp Med ; 7(1): 36-47, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356021

RESUMO

BACKGROUND: Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS: We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS: Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS: Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.


Assuntos
Aspergilose , Camundongos de Cruzamento Colaborativo , Humanos , Masculino , Camundongos , Animais , Camundongos de Cruzamento Colaborativo/genética , Mapeamento Cromossômico , Aspergillus fumigatus/genética , RNA-Seq , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Aspergilose/genética , Peso Corporal/genética
3.
Nat Microbiol ; 8(3): 455-468, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732471

RESUMO

Human cytomegalovirus (HCMV) can result in either productive or non-productive infection, with the latter potentially leading to viral latency. The molecular factors dictating these outcomes are poorly understood. Here we used single-cell transcriptomics to analyse HCMV infection progression in monocytes, which are latently infected, and macrophages, considered to be permissive for productive infection. We show that early viral gene expression levels, specifically of those encoding immediate early proteins IE1 and IE2, are a major factor dictating productive infection. We also revealed that intrinsic, not induced, host cell interferon-stimulated gene expression level is a main determinant of infection outcome. Intrinsic interferon-stimulated gene expression is downregulated with monocyte to macrophage differentiation, partially explaining increased macrophage susceptibility to productive HCMV infection. Furthermore, non-productive macrophages could reactivate, making them potential latent virus reservoirs. Overall, we decipher molecular features underlying HCMV infection outcomes and propose macrophages as a potential HCMV reservoir.


Assuntos
Infecções por Citomegalovirus , Proteínas Imediatamente Precoces , Humanos , Transcriptoma , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/genética , Proteínas Imediatamente Precoces/genética , Interferons/metabolismo
4.
Cell Rep ; 39(11): 110954, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671758

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to shutoff of protein synthesis, and nsp1, a central shutoff factor in coronaviruses, inhibits cellular mRNA translation. However, the diverse molecular mechanisms employed by nsp1 as well as its functional importance are unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant, we show that nsp1, through inhibition of translation and induction of mRNA degradation, targets translated cellular mRNA and is the main driver of host shutoff during infection. The propagation of nsp1 mutant virus is inhibited exclusively in cells with intact interferon (IFN) pathway as well as in vivo, in hamsters, and this attenuation is associated with stronger induction of type I IFN response. Therefore, although nsp1's shutoff activity is broad, it plays an essential role, specifically in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover nsp1's explicit role in blocking the IFN response.


Assuntos
COVID-19 , Proteínas não Estruturais Virais , Linhagem Celular , Humanos , Estabilidade de RNA , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo
5.
Cell Rep ; 39(2): 110653, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417700

RESUMO

During productive human cytomegalovirus (HCMV) infection, viral genes are expressed in a coordinated cascade that conventionally relies on the dependencies of viral genes on protein synthesis and viral DNA replication. By contrast, the transcriptional landscape of HCMV latency is poorly understood. Here, we examine viral gene expression dynamics during the establishment of both productive and latent HCMV infections. We redefine HCMV gene expression kinetics during productive infection and reveal that viral gene regulation does not represent a simple sequential cascade; many viral genes are regulated by multiple independent modules. Using our improved gene expression classification combined with transcriptome-wide measurements of the effects of a wide array of epigenetic inhibitors on viral gene expression during latency, we show that a defining feature of latency is the unique repression of immediate-early (IE) genes. Altogether, we recharacterize HCMV gene expression kinetics and reveal governing principles of lytic and latent gene expression.


Assuntos
Citomegalovirus , Infecção Latente , Citomegalovirus/genética , Replicação do DNA , DNA Viral , Regulação Viral da Expressão Gênica , Humanos , Transcriptoma , Latência Viral/genética , Replicação Viral/genética
6.
bioRxiv ; 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35313595

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.

7.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34642250

RESUMO

The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.


Assuntos
Ativação Linfocitária , RNA de Transferência/metabolismo , Linfócitos T/imunologia , Proliferação de Células/genética , Códon , Mutação da Fase de Leitura , Humanos , Processamento Pós-Transcricional do RNA , Linfócitos T/citologia
8.
Cell ; 184(15): 3962-3980.e17, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34171305

RESUMO

T cell-mediated immunity plays an important role in controlling SARS-CoV-2 infection, but the repertoire of naturally processed and presented viral epitopes on class I human leukocyte antigen (HLA-I) remains uncharacterized. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two cell lines at different times post infection using mass spectrometry. We found HLA-I peptides derived not only from canonical open reading frames (ORFs) but also from internal out-of-frame ORFs in spike and nucleocapsid not captured by current vaccines. Some peptides from out-of-frame ORFs elicited T cell responses in a humanized mouse model and individuals with COVID-19 that exceeded responses to canonical peptides, including some of the strongest epitopes reported to date. Whole-proteome analysis of infected cells revealed that early expressed viral proteins contribute more to HLA-I presentation and immunogenicity. These biological insights, as well as the discovery of out-of-frame ORF epitopes, will facilitate selection of peptides for immune monitoring and vaccine development.


Assuntos
Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fases de Leitura Aberta/genética , Peptídeos/imunologia , Proteoma/imunologia , SARS-CoV-2/imunologia , Células A549 , Alelos , Sequência de Aminoácidos , Animais , Apresentação de Antígeno/imunologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Peptídeos/química , Linfócitos T/imunologia
9.
Nature ; 594(7862): 240-245, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33979833

RESUMO

The coronavirus SARS-CoV-2 is the cause of the ongoing pandemic of COVID-191. Coronaviruses have developed a variety of mechanisms to repress host mRNA translation to allow the translation of viral mRNA, and concomitantly block the cellular innate immune response2,3. Although several different proteins of SARS-CoV-2 have previously been implicated in shutting off host expression4-7, a comprehensive picture of the effects of SARS-CoV-2 infection on cellular gene expression is lacking. Here we combine RNA sequencing, ribosome profiling and metabolic labelling of newly synthesized RNA to comprehensively define the mechanisms that are used by SARS-CoV-2 to shut off cellular protein synthesis. We show that infection leads to a global reduction in translation, but that viral transcripts are not preferentially translated. Instead, we find that infection leads to the accelerated degradation of cytosolic cellular mRNAs, which facilitates viral takeover of the mRNA pool in infected cells. We reveal that the translation of transcripts that are induced in response to infection (including innate immune genes) is impaired. We demonstrate this impairment is probably mediated by inhibition of nuclear mRNA export, which prevents newly transcribed cellular mRNA from accessing ribosomes. Overall, our results uncover a multipronged strategy that is used by SARS-CoV-2 to take over the translation machinery and to suppress host defences.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , SARS-CoV-2/patogenicidade , Regiões 5' não Traduzidas/genética , COVID-19/genética , COVID-19/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Proteínas não Estruturais Virais/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619107

RESUMO

Reactivation of human cytomegalovirus (HCMV) from latency is a major health consideration for recipients of stem-cell and solid organ transplantations. With over 200,000 transplants taking place globally per annum, virus reactivation can occur in more than 50% of cases leading to loss of grafts as well as serious morbidity and even mortality. Here, we present the most extensive screening to date of epigenetic inhibitors on HCMV latently infected cells and find that histone deacetylase inhibitors (HDACis) and bromodomain inhibitors are broadly effective at inducing virus immediate early gene expression. However, while HDACis, such as myeloid-selective CHR-4487, lead to production of infectious virions, inhibitors of bromodomain (BRD) and extraterminal proteins (I-BETs), including GSK726, restrict full reactivation. Mechanistically, we show that BET proteins (BRDs) are pivotally connected to regulation of HCMV latency and reactivation. Through BRD4 interaction, the transcriptional activator complex P-TEFb (CDK9/CycT1) is sequestered by repressive complexes during HCMV latency. Consequently, I-BETs allow release of P-TEFb and subsequent recruitment to promoters via the superelongation complex (SEC), inducing transcription of HCMV lytic genes encoding immunogenic antigens from otherwise latently infected cells. Surprisingly, this occurs without inducing many viral immunoevasins and, importantly, while also restricting viral DNA replication and full HCMV reactivation. Therefore, this pattern of HCMV transcriptional dysregulation allows effective cytotoxic immune targeting and killing of latently infected cells, thus reducing the latent virus genome load. This approach could be safely used to pre-emptively purge the virus latent reservoir prior to transplantation, thereby reducing HCMV reactivation-related morbidity and mortality.


Assuntos
Proteínas de Ciclo Celular/genética , Citomegalovirus/imunologia , DNA Viral/genética , Epigênese Genética , Histona Desacetilases/genética , Fator B de Elongação Transcricional Positiva/genética , Fatores de Transcrição/genética , Azepinas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzodiazepinas/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/imunologia , Ciclina T/genética , Ciclina T/imunologia , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/imunologia , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Replicação do DNA/efeitos dos fármacos , DNA Viral/antagonistas & inibidores , DNA Viral/imunologia , Genes Precoces , Genes Reporter , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/imunologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Fator B de Elongação Transcricional Positiva/imunologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Células THP-1 , Talidomida/análogos & derivados , Talidomida/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/imunologia , Transcrição Gênica , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
11.
Nature ; 589(7840): 125-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32906143

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 2019 (COVID-19) pandemic1. To understand the pathogenicity and antigenic potential of SARS-CoV-2 and to develop therapeutic tools, it is essential to profile the full repertoire of its expressed proteins. The current map of SARS-CoV-2 coding capacity is based on computational predictions and relies on homology with other coronaviruses. As the protein complement varies among coronaviruses, especially in regard to the variety of accessory proteins, it is crucial to characterize the specific range of SARS-CoV-2 proteins in an unbiased and open-ended manner. Here, using a suite of ribosome-profiling techniques2-4, we present a high-resolution map of coding regions in the SARS-CoV-2 genome, which enables us to accurately quantify the expression of canonical viral open reading frames (ORFs) and to identify 23 unannotated viral ORFs. These ORFs include upstream ORFs that are likely to have a regulatory role, several in-frame internal ORFs within existing ORFs, resulting in N-terminally truncated products, as well as internal out-of-frame ORFs, which generate novel polypeptides. We further show that viral mRNAs are not translated more efficiently than host mRNAs; instead, virus translation dominates host translation because of the high levels of viral transcripts. Our work provides a resource that will form the basis of future functional studies.


Assuntos
Perfilação da Expressão Gênica , Genoma Viral/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , SARS-CoV-2/genética , Proteínas Virais/biossíntese , Proteínas Virais/genética , Animais , Linhagem Celular , Humanos , Anotação de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Ribossomos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Proteínas Virais/metabolismo
12.
bioRxiv ; 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33024965

RESUMO

T cell-mediated immunity may play a critical role in controlling and establishing protective immunity against SARS-CoV-2 infection; yet the repertoire of viral epitopes responsible for T cell response activation remains mostly unknown. Identification of viral peptides presented on class I human leukocyte antigen (HLA-I) can reveal epitopes for recognition by cytotoxic T cells and potential incorporation into vaccines. Here, we report the first HLA-I immunopeptidome of SARS-CoV-2 in two human cell lines at different times post-infection using mass spectrometry. We found HLA-I peptides derived not only from canonical ORFs, but also from internal out-of-frame ORFs in Spike and Nucleoprotein not captured by current vaccines. Proteomics analyses of infected cells revealed that SARS-CoV-2 may interfere with antigen processing and immune signaling pathways. Based on the endogenously processed and presented viral peptides that we identified, we estimate that a pool of 24 peptides would provide one or more peptides for presentation by at least one HLA allele in 99% of the human population. These biological insights and the list of naturally presented SARS-CoV-2 peptides will facilitate data-driven selection of peptides for immune monitoring and vaccine development.

13.
Genes Dev ; 34(19-20): 1373-1391, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32943573

RESUMO

The N6-methyladenosine (m6A) modification is the most prevalent post-transcriptional mRNA modification, regulating mRNA decay and splicing. It plays a major role during normal development, differentiation, and disease progression. The modification is regulated by a set of writer, eraser, and reader proteins. The YTH domain family of proteins consists of three homologous m6A-binding proteins, Ythdf1, Ythdf2, and Ythdf3, which were suggested to have different cellular functions. However, their sequence similarity and their tendency to bind the same targets suggest that they may have overlapping roles. We systematically knocked out (KO) the Mettl3 writer, each of the Ythdf readers, and the three readers together (triple-KO). We then estimated the effect in vivo in mouse gametogenesis, postnatal viability, and in vitro in mouse embryonic stem cells (mESCs). In gametogenesis, Mettl3-KO severity is increased as the deletion occurs earlier in the process, and Ythdf2 has a dominant role that cannot be compensated by Ythdf1 or Ythdf3, due to differences in readers' expression pattern across different cell types, both in quantity and in spatial location. Knocking out the three readers together and systematically testing viable offspring genotypes revealed a redundancy in the readers' role during early development that is Ythdf1/2/3 gene dosage-dependent. Finally, in mESCs there is compensation between the three Ythdf reader proteins, since the resistance to differentiate and the significant effect on mRNA decay occur only in the triple-KO cells and not in the single KOs. Thus, we suggest a new model for the Ythdf readers function, in which there is profound dosage-dependent redundancy when all three readers are equivalently coexpressed in the same cell types.


Assuntos
Mecanismo Genético de Compensação de Dose , Gametogênese/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias , Fertilidade/genética , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout
14.
PLoS Pathog ; 16(4): e1008390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32294138

RESUMO

Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5' end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses.


Assuntos
Citomegalovirus/genética , Replicação do DNA , DNA Viral/genética , Proteínas Imediatamente Precoces/metabolismo , RNA Longo não Codificante/genética , Proteínas Virais/genética , Replicação Viral , Animais , Células Cultivadas , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/microbiologia , Infecções por Citomegalovirus/patologia , Regulação Viral da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Origem de Replicação
15.
Cell Rep ; 30(7): 2248-2260.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075763

RESUMO

Human cytomegalovirus (HCMV) causes diseases in individuals with immature or compromised immunity. To evade immune control, HCMV evolved numerous antagonists targeting the interferon system at multiple levels. By comparative analysis of naturally arising variants of the most widely studied HCMV strain, AD169, and a panel of targeted mutants, we uncover the UL145 gene as indispensable for STAT2 downregulation. Ribosome profiling confirms the translation of the canonical pUL145 protein (pUL145-Long) and newly identifies a shorter isoform (pUL145-Short). Both isoforms recruit DDB1-containing ubiquitin ligases to induce proteasomal degradation of STAT2. An alanine-scanning mutagenesis discloses the DDB1 interaction motif of pUL145 that resembles the DDB1-binding interface of cellular substrate receptors of DDB1-containing ubiquitin ligases. Thus, pUL145 constitutes a viral DDB1-cullin-associated factor (vDCAF), which mimics cellular DCAFs to exploit the ubiquitin-proteasome system to impede antiviral immunity. Notably, the viral exploitation of the cullins can be targeted to restore the efficacy of the host immune response.


Assuntos
Proteínas Culina/metabolismo , Citomegalovirus/genética , Imunidade Inata/genética , Isoformas de Proteínas/isolamento & purificação , Proteínas Virais/metabolismo , Células HeLa , Humanos , Ligação Proteica , Transfecção
16.
Nat Commun ; 11(1): 164, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919360

RESUMO

Host dependency factors that are required for influenza A virus infection may serve as therapeutic targets as the virus is less likely to bypass them under drug-mediated selection pressure. Previous attempts to identify host factors have produced largely divergent results, with few overlapping hits across different studies. Here, we perform a genome-wide CRISPR/Cas9 screen and devise a new approach, meta-analysis by information content (MAIC) to systematically combine our results with prior evidence for influenza host factors. MAIC out-performs other meta-analysis methods when using our CRISPR screen as validation data. We validate the host factors, WDR7, CCDC115 and TMEM199, demonstrating that these genes are essential for viral entry and regulation of V-type ATPase assembly. We also find that CMTR1, a human mRNA cap methyltransferase, is required for efficient viral cap snatching and regulation of a cell autonomous immune response, and provides synergistic protection with the influenza endonuclease inhibitor Xofluza.


Assuntos
Predisposição Genética para Doença/genética , Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/patogenicidade , Influenza Humana/genética , Influenza Humana/patologia , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Antivirais/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Dibenzotiepinas , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana/genética , Metiltransferases/metabolismo , Morfolinas , Proteínas do Tecido Nervoso/genética , Oxazinas/farmacologia , Piridinas/farmacologia , Piridonas , Tiepinas/farmacologia , Triazinas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Internalização do Vírus
17.
Elife ; 92020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31944176

RESUMO

Human herpesvirus-6 (HHV-6) A and B are ubiquitous betaherpesviruses, infecting the majority of the human population. They encompass large genomes and our understanding of their protein coding potential is far from complete. Here, we employ ribosome-profiling and systematic transcript-analysis to experimentally define HHV-6 translation products. We identify hundreds of new open reading frames (ORFs), including upstream ORFs (uORFs) and internal ORFs (iORFs), generating a complete unbiased atlas of HHV-6 proteome. By integrating systematic data from the prototypic betaherpesvirus, human cytomegalovirus, we uncover numerous uORFs and iORFs conserved across betaherpesviruses and we show uORFs are enriched in late viral genes. We identified three highly abundant HHV-6 encoded long non-coding RNAs, one of which generates a non-polyadenylated stable intron appearing to be a conserved feature of betaherpesviruses. Overall, our work reveals the complexity of HHV-6 genomes and highlights novel features conserved between betaherpesviruses, providing a rich resource for future functional studies.


Assuntos
Genoma Viral , Herpesvirus Humano 6/genética , Anotação de Sequência Molecular , Humanos , Íntrons , Fases de Leitura Aberta , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Ribossomos/metabolismo
18.
Elife ; 92020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31967545

RESUMO

Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.


Most people around the world unknowingly carry the human cytomegalovirus, as this virus can become dormant after infection and hide in small numbers of blood stem cells (which give rise to blood and immune cells). Dormant viruses still make their host cells read their genetic information and create viral proteins ­ a process known as gene expression ­ but they do not use them to quickly multiply. However, it is possible for the cytomegalovirus to reawaken at a later stage and start replicating again, which can be fatal for people with weakened immune systems. It is therefore important to understand exactly how the virus can stay dormant, and how it reactivates. Only certain infected cells allow dormant viruses to later reactivate; in others, it never starts to multiply again. Techniques that can monitor individual cells are therefore needed to understand how the host cells and the viruses interact during dormant infection and reactivation. To investigate this, Shnayder et al. infected blood stem cells in the laboratory and used a method known as single-cell RNA analysis, which highlights all the genes (including viral genes) that are expressed in a cell. This showed that in certain cells, the virus dampens the cell defenses, leading to a higher rate of viral gene expression and, in turn, easier reactivation. Further experiments showed that the blood stem cells that expressed the viral genes were marked to become a type of immune cells known as monocytes. In turn, these infected monocytes were shown to be less able to defend the body against infection, suggesting that latent human cytomegalovirus suppresses the body's innate immune response. The reactivation of human cytomegalovirus is a dangerous issue for patients who have just received an organ or blood stem cells transplant. The study by Shnayder et al. indicates that treatments that boost innate immunity may help to prevent the virus from reawakening, but more work is needed to test this theory.


Assuntos
Citomegalovirus , Interações Hospedeiro-Patógeno , Monócitos , Latência Viral , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Monócitos/imunologia , Monócitos/virologia , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Latência Viral/genética , Latência Viral/imunologia
19.
Front Cell Infect Microbiol ; 10: 607470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489936

RESUMO

Human cytomegalovirus (HCMV) is a widespread pathogen establishing a latent infection in its host. HCMV reactivation is a major health burden in immunocompromised individuals, and is a major cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT). Here we determined HCMV genomic levels using droplet digital PCR in different peripheral blood mononuclear cell (PBMC) populations in HCMV reactivating HSCT patients. This high sensitivity approach revealed that all PBMC populations harbored extremely low levels of viral DNA at the peak of HCMV DNAemia. Transcriptomic analysis of PBMCs from high-DNAemia samples revealed elevated expression of genes typical of HCMV specific T cells, while regulatory T cell enhancers as well as additional genes related to immune response were downregulated. Viral transcript levels in these samples were extremely low, but remarkably, the detected transcripts were mainly immediate early viral genes. Overall, our data indicate that HCMV DNAemia is associated with distinct signatures of immune response in the blood compartment, however it is not necessarily accompanied by substantial infection of PBMCs and the residual infected PBMCs are not productively infected.


Assuntos
Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus/genética , DNA Viral/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Hospedeiro Imunocomprometido , Leucócitos Mononucleares
20.
Front Microbiol ; 10: 2233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649625

RESUMO

Herpesviruses undergo life-long latent infection which can be life-threatening in the immunocompromised. Models of latency and reactivation of human cytomegalovirus (HCMV) include primary myeloid cells, cells known to be important for HCMV latent carriage and reactivation in vivo. However, primary cells are limited in availability, and difficult to culture and to genetically modify; all of which have hampered our ability to fully understand virus/host interactions of this persistent human pathogen. We have now used iPSCs to develop a model cell system to study HCMV latency and reactivation in different cell types after their differentiation down the myeloid lineage. Our results show that iPSCs can effectively mimic HCMV latency/reactivation in primary myeloid cells, allowing molecular interrogations of the viral latent/lytic switch. This model may also be suitable for analysis of other viruses, such as HIV and Zika, which also infect cells of the myeloid lineage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...