Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Neurosci ; 32(17): 5783-94, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539840

RESUMO

In order for growth cones to turn, microtubules from the central domain must preferentially invade the peripheral domain in the direction of the turn. Recent studies suggest that kinesin-5 (also called Eg5 or kif11) suppresses the invasion of microtubules into the peripheral domain on the side of the growth cone opposite the direction of turning. In theory, kinesin-5 could elicit these effects by acting on the microtubules within the peripheral domain itself, by acting on microtubules in the central domain, or in the transition zone between these two domains. In rat neurons expressing kinesin-5, we documented the presence of kinesin-5 in both domains of the growth cone and especially enriched in the transition zone. We then focally inactivated kinesin-5 in various regions of the growth cone, using micro-chromophore-assisted laser inactivation. We found that a greater invasion of microtubules into the peripheral domain occurred when kinesin-5 was inactivated specifically in the transition zone. However, there was no effect on microtubule invasion into the peripheral domain when kinesin-5 was inactivated in the peripheral domain itself or in the central domain. In other experiments, frog growth cones were observed to turn toward a gradient of a drug that inhibits kinesin-5, confirming that asymmetric inactivation of kinesin-5 can cause the growth cone to turn. Finally, expression of a phospho-mutant of kinesin-5 resulted in greater microtubule invasion throughout the peripheral domain and an inhibition of growth cone turning, implicating phosphorylation as a means by which kinesin-5 is regulated in the growth cone.


Assuntos
Cones de Crescimento/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neurônios/citologia , Animais , Células Cultivadas , Embrião não Mamífero , Feminino , Gânglios Simpáticos/citologia , Cones de Crescimento/efeitos dos fármacos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Microdissecção e Captura a Laser , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Paclitaxel/farmacologia , Gravidez , Pirimidinas/farmacologia , Radiação , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Tionas/farmacologia , Fatores de Tempo , Moduladores de Tubulina/farmacologia , Xenopus
2.
J Neurosci ; 30(44): 14896-906, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048148

RESUMO

Kinesin-12 (also called Kif15) is a mitotic motor protein that continues to be expressed in developing neurons. Depletion of kinesin-12 causes axons to grow faster, more than doubles the frequency of microtubule transport in both directions in the axon, prevents growth cones from turning properly, and enhances the invasion of microtubules into filopodia. These results are remarkably similar to those obtained in previous studies in which neurons were depleted of kinesin-5 (also called Eg5 or Kif11), another mitotic motor protein that continues to be expressed in developing neurons. However, there are also notable differences in the phenotypes obtained with depleting each of these motors. Depleting kinesin-12 decreases axonal branching and growth cone size, whereas inhibiting kinesin-5 increases these parameters. In addition, depleting kinesin-12 diminishes the appearance of growth-cone-like waves along the length of the axon, an effect not observed with depletion of kinesin-5. Finally, depletion of kinesin-12 abolishes the "waggling" behavior of microtubules that occurs as they assemble along actin bundles within filopodia, whereas inhibition of kinesin-5 does not. Interestingly, and perhaps relevant to these differences in phenotype, in biochemical studies, kinesin-12 coimmunoprecipitates with actin but kinesin-5 does not. Collectively, these findings support a scenario whereby kinesin-12 shares functions with kinesin-5 related to microtubule-microtubule interactions, but kinesin-12 has other functions not shared by kinesin-5 that are related to the ability of kinesin-12 to interact with actin.


Assuntos
Diferenciação Celular/fisiologia , Cones de Crescimento/metabolismo , Cinesinas/fisiologia , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Gânglios Simpáticos/citologia , Gânglios Simpáticos/embriologia , Gânglios Simpáticos/crescimento & desenvolvimento , Cones de Crescimento/ultraestrutura , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Sistema Nervoso/citologia , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Ratos
3.
Curr Biol ; 18(24): 1972-7, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19084405

RESUMO

Inhibition of kinesin-5, a mitotic motor protein also expressed in neurons, causes axons to grow faster as a result of alterations in the forces on microtubules (MTs) in the axonal shaft. Here, we investigate whether kinesin-5 plays a role in growth-cone guidance. Growth-cone turning requires that MTs in the central (C-) domain enter the peripheral (P-) domain in the direction of the turn. We found that inhibition of kinesin-5 in cultured neurons prevents MTs from polarizing within growth cones and causes them to grow past cues that would normally cause them to turn. We found that kinesin-5 is enriched in the transition (T-) zone of the growth cone and that kinesin-5 is preferentially phosphorylated on the side opposite the invasion of MTs. Moreover, when a growth cone encounters a turning cue, phospho-kinesin-5 polarizes even before the growth cone turns. Additional studies indicate that kinesin-5 works in part by antagonizing cytoplasmic dynein and that these motor-driven forces function together with the dynamic properties of the MTs to determine whether MTs can enter the P-domain. We propose that kinesin-5 permits MTs to selectively invade one side of the growth cone by opposing their entry into the other side.


Assuntos
Cones de Crescimento/fisiologia , Cinesinas/fisiologia , Animais , Células Cultivadas , Dineínas/fisiologia , Gânglios Simpáticos/efeitos dos fármacos , Gânglios Simpáticos/crescimento & desenvolvimento , Gânglios Simpáticos/fisiologia , Gânglios Simpáticos/ultraestrutura , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Técnicas In Vitro , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Movimento/efeitos dos fármacos , Movimento/fisiologia , Fator de Crescimento Neural/farmacologia , Fosforilação , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Ratos , Tionas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...