Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 20(11): 116005, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524682

RESUMO

We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.


Assuntos
Antebraço/anatomia & histologia , Antebraço/fisiologia , Iluminação/métodos , Modelos Biológicos , Nefelometria e Turbidimetria/métodos , Fotografação/métodos , Simulação por Computador , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Fotografação/instrumentação , Refratometria/instrumentação , Refratometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
J Biomed Opt ; 20(3): 030901, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25803186

RESUMO

We present a review of short-wave infrared (SWIR, defined here as ∼1000 to 2000 nm) spectroscopy and imaging techniques for biological tissue optical property characterization. Studies indicate notable SWIR absorption features of tissue constituents including water (near 1150, 1450, and 1900 nm), lipids (near 1040, 1200, 1400, and 1700 nm), and collagen (near 1200 and 1500 nm) that are much more prominent than corresponding features observed in the visible and near-infrared (VIS-NIR, defined here as ∼400 to 1000 nm). Furthermore, the wavelength dependence of the scattering coefficient has been observed to follow a power-law decay from the VIS-NIR to the SWIR region. Thus, the magnitude of tissue scattering is lower at SWIR wavelengths than that observed at VIS or NIR wavelengths, potentially enabling increased penetration depth of incident light at SWIR wavelengths that are not highly absorbed by the aforementioned chromophores. These aspects of SWIR suggest that the tissue spectroscopy and imaging in this range of wavelengths have the potential to provide enhanced sensitivity (relative to VIS-NIR measurements) to chromophores such as water and lipids, thereby helping to characterize changes in the concentrations of these chromophores due to conditions such as atherosclerotic plaque, breast cancer, and burns.


Assuntos
Imagem Óptica/métodos , Espectrofotometria Infravermelho , Tecido Adiposo/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Queimaduras/diagnóstico por imagem , Colágeno , Diagnóstico por Imagem , Feminino , Humanos , Placa Aterosclerótica , Espalhamento de Radiação , Espectroscopia de Luz Próxima ao Infravermelho
3.
J Biomed Opt ; 19(8): 086011, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25120175

RESUMO

Extending the wavelength range of spatial frequency domain imaging (SFDI) into the short-wave infrared (SWIR) has the potential to provide enhanced sensitivity to chromophores such as water and lipids that have prominent absorption features in the SWIR region. Here, we present, for the first time, a method combining SFDI with unstructured (zero spatial frequency) illumination to extract tissue absorption and scattering properties over a wavelength range (850 to 1800 nm) largely unexplored by previous tissue optics techniques. To obtain images over this wavelength range, we employ a SWIR camera in conjunction with an SFDI system. We use SFDI to obtain in vivo tissue reduced scattering coefficients at the wavelengths from 850 to 1050 nm, and then use unstructured wide-field illumination and an extrapolated power-law fit to this scattering spectrum to extract the absorption spectrum from 850 to 1800 nm. Our proof-of-principle experiment in a rat burn model illustrates that the combination of multispectral SWIR imaging, SFDI, and unstructured illumination can characterize in vivo changes in skin optical properties over a greatly expanded wavelength range. In the rat burn experiment, these changes (relative to normal, unburned skin) included increased absorption and increased scattering amplitude and slope, consistent with changes that we previously reported in the near-infrared using SFDI.


Assuntos
Algoritmos , Queimaduras/patologia , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Pele/química , Pele/lesões , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Projetos Piloto , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Biomed Opt ; 19(5): 056013, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24858131

RESUMO

We have developed a method for extracting spatial frequency information content from biological tissue, which is used to calculate tissue optical properties and determine tissue structural orientation. This demodulation method employs a two-dimensional Hilbert transform using a spiral phase function in Fourier space. The approach presented here allows for the determination of tissue optical properties using a single frame of data for each modulation frequency, increasing imaging speed by two to threefold versus conventional, three-phase spatial frequency domain imaging (SFDI). This new single-phase Hilbert transform approach recovers optical property and scattering orientation index values within 1% and 10% of three-phase SFDI, respectively. These results suggest that, using the Hilbert demodulation technique, SFDI data acquisition speed can be increased significantly while preserving data quality, which will help us move forward toward the implementation of a real-time SFDI platform.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Análise Espectral/métodos , Algoritmos , Simulação por Computador , Antebraço/fisiologia , Análise de Fourier , Humanos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...