Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 21(10): e50718, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32785991

RESUMO

Senescent cells display senescence-associated (SA) phenotypic programs such as stable proliferation arrest (SAPA) and a secretory phenotype (SASP). Senescence-inducing persistent DNA double-strand breaks (pDSBs) cause an immediate DNA damage response (DDR) and SAPA, but the SASP requires days to develop. Here, we show that following the immediate canonical DDR, a delayed chromatin accumulation of the ATM and MRN complexes coincides with the expression of SASP factors. Importantly, histone deacetylase inhibitors (HDACi) trigger SAPA and SASP in the absence of DNA damage. However, HDACi-induced SASP also requires ATM/MRN activities and causes their accumulation on chromatin, revealing a DNA damage-independent, non-canonical DDR activity that underlies SASP maturation. This non-canonical DDR is required for the recruitment of the transcription factor NF-κB on chromatin but not for its nuclear translocation. Non-canonical DDR further does not require ATM kinase activity, suggesting structural ATM functions. We propose that delayed chromatin recruitment of SASP modulators is the result of non-canonical DDR signaling that ensures SASP activation only in the context of senescence and not in response to transient DNA damage-induced proliferation arrest.


Assuntos
Senescência Celular , NF-kappa B , Senescência Celular/genética , Cromatina/genética , Dano ao DNA , NF-kappa B/metabolismo , Transdução de Sinais
2.
Methods Mol Biol ; 2045: 93-105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31020633

RESUMO

Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-ßgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Senescência Celular/genética , Citocinas/metabolismo , Dano ao DNA , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Inflamação/metabolismo , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Mesenquimais/efeitos da radiação , Células-Tronco Multipotentes/enzimologia , Células-Tronco Multipotentes/fisiologia , Células-Tronco Multipotentes/efeitos da radiação , Fenótipo , Transdução de Sinais/genética , Telômero/genética , Telômero/metabolismo , Fluxo de Trabalho , beta-Galactosidase/metabolismo
3.
Stem Cells Transl Med ; 6(4): 1132-1140, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28194905

RESUMO

Inflammation plays a pivotal role in the initiation and progression of atherosclerosis (ATH). Due to their potent immunomodulatory properties, mesenchymal stromal cells (MSCs) are evaluated as therapeutic tools in ATH and other chronic inflammatory disorders. Aging reduces MSCs immunopotency potentially limiting their therapeutic utility. The mechanisms that mediate the effect of age on MSCs immune-regulatory function remain elusive and are the focus of this study. Human adipose tissue-derived MSCs were isolated from patients undergoing coronary artery bypass graft surgery. MSCs:CD4+ T-cell suppression, a readout of MSCs' immunopotency, was assessed in allogeneic coculture systems. MSCs from elderly subjects were found to exhibit a diminished capacity to suppress the proliferation of activated T cells. Soluble factors and, to a lesser extent, direct cell-cell contact mechanisms mediated the MSCs:T-cell suppression. Elderly MSCs exhibited a pro-inflammatory secretome with increased levels of interleukin-6 (IL-6), IL-8/CXCL8, and monocyte chemoattractant protein-1 (MCP-1/CCL2). Neutralization of these factors enhanced the immunomodulatory function of elderly MSCs. In summary, our data reveal that in contrast to young MSCs, MSCs from elderly individuals with ATH secrete high levels of IL-6, IL-8/CXCL8 and MCP-1/CCL2 which mediate their reduced immunopotency. Consequently, strategies aimed at targeting pro-inflammatory cytokines/chemokines produced by MSCs could enhance the efficacy of autologous cell-based therapies in the elderly. Stem Cells Translational Medicine 2017;6:1132-1140.


Assuntos
Aterosclerose/imunologia , Aterosclerose/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Adulto , Idoso , Aterosclerose/terapia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
4.
Oncotarget ; 7(12): 13285-96, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26934440

RESUMO

Hematopoietic stem and progenitor cell (HSPC) homeostasis declines with age, leading to impaired hematopoiesis. Mesenchymal stromal cells (MSC) are critical components of the bone marrow niche and key regulators of the balance between HSPC proliferation and quiescence. Accrual of DNA damage, a hallmark of cellular aging, occurs in aged MSC. Whether MSC aging alters the bone marrow niche triggering HSPC dysfunction is unknown. Using a human MSC-HSPC co-culture system, we demonstrated that DNA damaged MSC have impaired capacity to maintain CD34+CD38- HSPC quiescence. Furthermore, human MSC from adult donors display some hallmarks of cellular senescence and have a decreased capacity to maintain HSPC quiescence and the most primitive CD34+CD38- subset compared to MSC from pediatric donors. IL-6 neutralization restores the MSC-HPSC crosstalk in senescent and adult MSC-HSPC co-cultures highlighting the relevance of the local microenvironment in maintaining HSPC homeostasis. These results provide new evidence implicating components of the MSC secretome in HSPC aging.


Assuntos
Senescência Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Interleucina-6/metabolismo , Células-Tronco Mesenquimais/citologia , Adolescente , Antígenos CD34/metabolismo , Apoptose , Biomarcadores/metabolismo , Proliferação de Células , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade
5.
J Gen Physiol ; 145(2): 127-53, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25624449

RESUMO

We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer's law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites in the CSQ knockout muscles.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Animais , Anuros , Quelantes de Cálcio/química , Ácido Egtázico/análogos & derivados , Ácido Egtázico/química , Camundongos , Ratos , Espectrometria de Fluorescência/métodos
6.
J Cell Sci ; 127(Pt 1): 111-23, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24190883

RESUMO

We and others have shown that trafficking of G-protein-coupled receptors is regulated by Rab GTPases. Cargo-mediated regulation of vesicular transport has received great attention lately. Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Rab GTPases are well-recognized targets of human diseases but their regulation and the mechanisms connecting them to cargo proteins are still poorly understood. Here, we show by overexpression and depletion studies that HACE1, a HECT-domain-containing ubiquitin ligase, promotes the recycling of the ß2-adrenergic receptor (ß2AR), a prototypical G-protein-coupled receptor, through a Rab11a-dependent mechanism. Interestingly, the ß2AR in conjunction with HACE1 triggered ubiquitylation of Rab11a, as observed by western blot analysis. LC-MS/MS experiments determined that Rab11a is ubiquitylated on Lys145. A Rab11a-K145R mutant failed to undergo ß2AR-HACE1-induced ubiquitylation and inhibited the HACE1-mediated recycling of the ß2AR. Rab11a, but not Rab11a-K145R, was activated by ß2AR-HACE1, indicating that ubiquitylation of Lys145 is involved in activation of Rab11a. Co-expression of ß2AR-HACE1 also potentiated ubiquitylation of Rab6a and Rab8a, but not of other Rab GTPases that were tested. We report a novel regulatory mechanism of Rab GTPases through their ubiquitylation, with associated functional effects demonstrated on Rab11a. This suggests a new pathway whereby a cargo protein, such as a G-protein-coupled receptor, can regulate its own trafficking by inducing the ubiquitylation and activation of a Rab GTPase.


Assuntos
Receptores Adrenérgicos beta 2/genética , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , Sequência de Aminoácidos , Arginina/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Transporte Proteico , Receptores Adrenérgicos beta 2/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rab de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...