Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
3 Biotech ; 14(6): 159, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770163

RESUMO

There is little data, to our knowledge, on the biochemical properties of different Satureja sp. genotypes affected by plant growth regulators (PGR) under temperature stress. A split plot research on the basis of a complete randomized block design with three replicates examining temperature stress (planting dates, 8th of April, May and June) (main factor), and the factorial combination of plant growth regulators (PGR, control (CO), gibberellic acid (GA), fertilization (MI), and amino acid (A)), and genotypes (Khuzestani, Mutika, and Bakhtiari) on plant biochemical properties, was conducted. Plant pigment contents (chlorophyll a, and b and carotenoids (car)), antioxidant activity (catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GP)), and leaf protein were determined. Treatments significantly and differently affected the genotypes performance. PD3 and PD1resulted in significantly higher activity of APX (0.059 U. mg-1) and GP (0.190 U. mg-1), respectively (P ≤ 0.05). Temperature stress significantly affected plant CAT activity (U. mg-1) at PD1 (0.084) and PD3 (0.820). Higher temperature significantly enhanced leaf Pro, MI increased plant APX (0.054) and CAT activities (0.111 U. mg-1) significantly, and GA resulted in the highest and significantly different GP activity (0.186 U. mL-1). Treatments T1 and T3 significantly enhanced Chla and Car content, and MI resulted in significantly higher Chlb content (0.085 mg g-1 leaf fresh weight). Car and CAT are the two most sensitive biochemical traits under temperature stress and can more effectively regulate Satureja growth and activity. It is possible to alleviate temperature stress on Satureja biochemical properties by the tested PGR.

2.
Avicenna J Med Biotechnol ; 16(1): 16-28, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605741

RESUMO

Background: Repeated Ovum Pick Up (OPU) could have a detrimental effect on ovarian function, reducing In Vitro Embryo Production (IVEP). The present study examined the therapeutic effect of adipose-derived Mesenchymal Stem Cells (MSCs) or its Conditioned Medium (ConM) on ovarian trauma following repeated OPU. Resolvin E1 (RvE1) and Interleukin-12 (IL-12) were investigated as biomarkers. Methods: Jersey heifers (n=8) experienced 11 OPU sessions including 5 pre-treatment and 6 treatment sessions. Heifers received intra-ovarian administration of MSCs or ConM (right ovary) and Dulbecco's Modified Phosphate Buffer Saline (DMPBS; left ovary) after OPU in sessions 5 and 8 and 2 weeks after session 11. The concentrations of RvE1 and IL-12 in follicular fluid was evaluated on sessions 1, 5, 6, 9, and 4 weeks after session 11. Following each OPU session, the IVEP parameters were recorded. Results: Intra-ovarian administration of MSCs, ConM, and DMPBS did not affect IVEP parameters (p>0.05). The concentration of IL-12 in follicular fluid increased at the last session of pre-treatment (Session 5; p<0.05) and remained elevated throughout the treatment period. There was no correlation between IL-12 and IVEP parameters (p>0.05). However, RvE1 remained relatively high during the pre-treatment and decreased toward the end of treatment period (p<0.05). This in turn was associated with decline in some IVEP parameters (p<0.05). Conclusion: Intra-ovarian administration of MSCs or ConM during repeated OPU did not enhance IVEP outcomes in Bos taurus heifers. The positive association between RvE1 and some of IVEP parameters could nominate RvE1 as a promising biomarker to predict IVEP parameters following repeated OPU.

3.
Prague Med Rep ; 125(1): 5-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380450

RESUMO

There is little data regarding the impact of renin-angiotensin system (RAS) gene polymorphisms on tuberculosis. The current study designed to survey the possible association between RAS polymorphisms and the risk of pulmonary tuberculosis (PTB) in a sample of the southeast Iranian population. This case-control study was done on 170 PTB patients and 170 healthy subjects. The AGT rs699 C>T, ACE rs4341 C>G and AT1R rs5186 C>A variants were genotyped using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and ACE rs4646994 (287bp I/D) variant by PCR method. Regarding AT1R rs5186 A>C polymorphism, the findings revealed that AC genotype and C allele significantly decreased the risk of PTB (OR=0.39, 95% CI=0.22-0.67, p=0.001, and OR=0.53, 95% CI=0.25-0.72, p=0.002, C vs. A, respectively). The TC genotype and C allele of AGT rs699 T>C significantly associated with decreased the risk of PTB (OR=0.45, 95% CI=0.28-0.74, p=0.002, TC vs. TT and OR=0.51, 95% CI=0.32-0.80, p=0.005, C vs. T, respectively). The ID genotype of ACE 287bp I/D significantly increased the risk of PTB (OR=1.88, 95% CI=1.12-3.17, p=0.017). Our finding did not support an association between ACE rs4341 C>G variant and the risk of PTB. In summary, the findings revealed an association between AT1R rs5186 A>C, AGT rs699 T>C and ACE 287bp I/D polymorphisms and the risk of PTB in a sample of the southeast Iranian population. Further investigation with higher sample sizes and diverse ethnicities are required to confirm our findings.


Assuntos
Peptidil Dipeptidase A , Tuberculose Pulmonar , Humanos , Angiotensinogênio/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Irã (Geográfico)/epidemiologia , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Receptor Tipo 1 de Angiotensina/genética , Tuberculose Pulmonar/genética
4.
Iran J Basic Med Sci ; 26(12): 1468-1474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970435

RESUMO

Objectives: Exhausted CD8+ T-cells over-express immune checkpoint receptors (ICRs), which interact with their ligands on malignant cells. However, some ICRs have been reported to be expressed on both T-cells and tumor cells, including V-domain immunoglobulin suppressor of T cell activation (VISTA), Galectin-9, and T-cell immunoglobulin mucin-3 (TIM-3). We aimed to evaluate the mRNA expression of VISTA, Galectin-9, and TIM-3 on CD8+ T-cells and leukemic cells in B-cell acute lymphoblastic leukemia (B-ALL). Materials and Methods: Samples were obtained from 26 untreated B-ALL patients and 25 control subjects. CD8+ T-cells were isolated using Magnetic Activated Cell Sorting (MACS). Relative gene expression was then evaluated by qRT-PCR with specific primers for VISTA, Galectin-9, and TIM-3. Also, the mRNA expression profile and clinical data of 154 B-ALL patients were obtained from the TARGET. Results: mRNA expression of Galectin-9 on CD8+ T-cells in B-ALL patients was significantly lower than those in the control group (P=0.043), while VISTA expression was not significantly different between the two study groups (P=0.259). Besides, TIM-3 expression was significantly higher in B-ALL patients than in the control group (P<0.001). Also, data obtained from TARGET showed that the relapse incidence was not significantly different between patients with high and low expression of Galectin-9 and TIM-3 in leukemic cells (P=0.360 and P=0.655, respectively). Conclusion: Collectively, gene expression results suggest an important role for TIM-3, but not VISTA and Galectin-9, in B-ALL and it seems that TIM-3 could be a candidate for immune checkpoint therapy.

5.
Microsyst Nanoeng ; 9: 73, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288322

RESUMO

Particle migration dynamics in viscoelastic fluids in spiral channels have attracted interest in recent years due to potential applications in the 3D focusing and label-free sorting of particles and cells. Despite a number of recent studies, the underlying mechanism of Dean-coupled elasto-inertial migration in spiral microchannels is not fully understood. In this work, for the first time, we experimentally demonstrate the evolution of particle focusing behavior along a channel downstream length at a high blockage ratio. We found that flow rate, device curvature, and medium viscosity play important roles in particle lateral migration. Our results illustrate the full focusing pattern along the downstream channel length, with side-view imaging yielding observations on the vertical migration of focused streams. Ultimately, we anticipate that these results will offer a useful guide for elasto-inertial microfluidics device design to improve the efficiency of 3D focusing in cell sorting and cytometry applications.

6.
Front Bioeng Biotechnol ; 11: 1252636, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312510

RESUMO

There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.

7.
Avicenna J Med Biotechnol ; 14(4): 287-293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504564

RESUMO

Backgrounds: The aim of this study was to determine whether the addition of bioactive materials derived from Menstrual Blood Stem Cells (MenSCs) to the oocyte maturation medium may improve the quality of bovine embryos in vitro. Methods: MenSCs were collected from 6 healthy women (between 26 and 36 years old) and after 3 days of culture, their bioactive materials were frozen. The bovine Cumulus-Oocyte-Complexes (COCs) were aspirated from ovarian slaughterhouse and the oocytes with more than three layers of cumulus cells were cultured in vitro in media supplemented with (treatment) and without (control) 10% MenSCs' bioactive materials. After IVM/IVF, the presumptive zygotes were cultured for 8 days. Results: The blastocyst rate on day 8 in treatment group was higher than control (40.2±1.9 vs. 23±4.2.3, p=0.001). The ratio of Trophectoderm (TE) and Inner Cell Mass (ICM) (ICM/TE) cells was also greater in treatment group compared to control (30.3±2 vs. 14.9±1; p=0.001). The re-expansion of vitrified blastocysts, 24 hours after warming, in treatment group was higher than control (93.3±2.5 vs. 66.2±8.8; p=0.01). The expression of some genes related to pluripotency and implantation (OCT4, CDX2, and IFNT) were increased in treatment group compared to control (p<0/05). Conclusion: In conclusion, the addition of MenSCs' bioactive materials during in vitro maturation of bovine oocytes could improve the quantity and quality of bovine IVP embryos. Also, the expression of some genes associated with pluripotency and implantation in the blastocyst would be increased.

8.
Micromachines (Basel) ; 13(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557430

RESUMO

Growth of the microfluidics field has triggered numerous advances in focusing and separating microparticles, with such systems rapidly finding applications in biomedical, chemical, and environmental fields. The use of shear-thinning viscoelastic fluids in microfluidic channels is leading to evolution of elasto-inertial focusing. Herein, we showed that the interplay between the elastic and shear-gradient lift forces, as well as the secondary flow transversal drag force that is caused by the non-zero second normal stress difference, lead to different particle focusing patterns in the elasto-inertial regime. Experiments and 3D simulations were performed to study the effects of flowrate, particle size, and the shear-thinning extent of the fluid on the focusing patterns. The Giesekus constitutive equation was used in the simulations to capture the shear-thinning and viscoelastic behaviors of the solution used in the experiments. At low flowrate, with Weissenberg number Wi ~ O(1), both the elastic force and secondary flow effects push particles towards the channel center. However, at a high flowrate, Wi ~ O(10), the elastic force direction is reversed in the central regions. This remarkable behavior of the elastic force, combined with the enhanced shear-gradient lift at the high flowrate, pushes particles away from the channel center. Additionally, a precise prediction of the focusing position can only be made when the shear-thinning extent of the fluid is correctly estimated in the modeling. The shear-thinning also gives rise to the unique behavior of the inertial forces near the channel walls which is linked with the 'warped' velocity profile in such fluids.

9.
Prog Orthod ; 23(1): 25, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35908119

RESUMO

BACKGROUND: Estimating skeletal maturation and growth potential is essential for developing adolescents' best orthodontic treatment plan. The purpose of this study was to compare the duration of adolescent growth peak in subjects of skeletal classes I and III using the cervical vertebral maturation (CVM) method. METHODS: This retrospective cross-sectional study included 116 Iranian subjects (skeletal class I = 68, skeletal class III = 48) aged 8-16 years old and without previous orthodontic treatments. Using Steiner and Wits analyses, two independent examiners traced pre-treatment lateral cephalograms to determine the subjects' skeletal relationship. The skeletal maturation was then assessed using Baccetti's CVM method. The onset and duration of adolescent growth peak (interval of CS3-CS4) were compared between two skeletal classes and two genders using independent samples t test. RESULTS: In skeletal class I and III subjects, the adolescent peak had a mean duration of 1.62 (± 1.33) and 2.00 (± 1.27) years, respectively. The average difference of 0.38 years (4.6 months) between the two groups was statistically significant (p < 0.001). Furthermore, the onset age of adolescent growth peak was 11.91 (± 1.32) and 12.08 (± 1.31) years old in class I and III subjects, respectively. This age difference was not statistically significant (p = 0.630). Males' adolescent growth peak occurred 1.44 years later (p < 0.001) and lasted 0.20 years less (p < 0.001). CONCLUSIONS: The adolescent growth peak started at a similar age in class I and III subjects, but the latter experienced the peak for 4.6 months longer. Moreover, females had an earlier and more extended adolescent growth peak.


Assuntos
Determinação da Idade pelo Esqueleto , Vértebras Cervicais , Adolescente , Determinação da Idade pelo Esqueleto/métodos , Cefalometria/métodos , Criança , Estudos Transversais , Feminino , Humanos , Lactente , Irã (Geográfico) , Masculino , Estudos Retrospectivos
10.
Aquat Toxicol ; 247: 106157, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35436696

RESUMO

The present research investigated the effects of exposure to sublethal concentrations of cadmium selenide/zinc sulfide (CdSecore/ZnSshell)-containing quantum dots (QDs; 0 - 100 µg/L QDs) on the neurophysiological performance of developing zebrafish (Danio rerio). The results suggested that exposure to CdSe QDs for 5 days increased the whole-body content of Cd without affecting the general physiological conditions of larvae. Interestingly, CdSe QD exposure reduced swimming distance but increased swimming velocity of larvae, suggesting that the exposure may lead to burst/episodic swimming. The findings also suggested that CdSe QD exposure reduced the wall-hugging behavior of larvae during a sudden light-to-dark transition test, and that the exposure significantly decreased the locomotor activity of fish during the dark period. On the other hand, control larvae displayed a dark avoidance behavior, whereas CdSe QD-exposed larvae exhibited an increase in the time spent in the dark zone, providing further support that CdSe QDs inhibited anxiety-related responses in larvae. Additional analysis with droplet digital PCR revealed that CdSe QD exposure altered the mRNA levels of genes that are associated with dopamine signaling and oxidative stress response. Collectively, our findings suggested that CdSe QD exposure may induce neurobehavioural toxicity and alters the mRNA abundance of dopamine- and oxidative stress-related genes in developing animals.


Assuntos
Pontos Quânticos , Compostos de Selênio , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Dopamina , Larva , Pontos Quânticos/toxicidade , RNA Mensageiro , Compostos de Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
11.
Neurotoxicology ; 88: 144-154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808222

RESUMO

Dysregulation of the oxytocinergic system and excitation/inhibition (E/I) balance in synaptic transmission and neural circuits are common hallmarks of various neurodevelopmental disorders. Several experimental and epidemiological studies have shown that perinatal exposure to endocrine-disrupting chemicals bisphenol A (BPA) and bisphenol S (BPS) may contribute to a range of childhood neurodevelopmental disorders. However, the effects of BPA and BPS on social-cognitive development and the associated mechanisms remain largely unknown. In this study, we explored the impacts of early developmental exposure (2hpf-5dpf) to environmentally relevant concentrations of BPA, and its analog BPS (0.001, 0.01, and 0.1 µM), on anxiety, social behaviors, and memory performance in 21 dpf zebrafish larvae. Our results revealed that early-life exposure to low concentrations of BPA and BPS elevated anxiety-like behavior, while fish exposed to higher concentrations of these chemicals displayed social deficits and impaired object recognition memory. Additionally, we found that co-exposure with an aromatase inhibitor antagonized BPA- and BPS-induced effects on anxiety levels and social behaviors, while the co-exposure to an estrogen receptor antagonist restored recognition memory in zebrafish larvae. These results indicate that BPA and BPS may affect social-cognitive function through distinct mechanisms. On the other hand, exposure to low BPA/BPS concentrations increased both the mRNA and protein levels of isotocin (zebrafish oxytocin) in the zebrafish brain, whereas a reduction in its mRNA level was observed at higher concentrations. Further, alterations in the transcript abundance of chloride transporters, and molecular markers of gamma-aminobutyric acid (GABA) and glutamatergic systems, were observed in the zebrafish brain, suggesting possible E/I imbalance following BPA or BPS exposure. Collectively, the results of this study demonstrate that early-life exposure to low concentrations of the environmental contaminants BPA and BPS can interfere with the isotocinergic signaling pathway and disrupts the establishment of E/I balance in the developing brain, subsequently leading to the onset of a suite of behavioral deficits and neurodevelopmental disorders.


Assuntos
Compostos Benzidrílicos/toxicidade , Cognição/efeitos dos fármacos , Ocitocina/análogos & derivados , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Locomoção/efeitos dos fármacos , Masculino , Ocitocina/metabolismo , Comportamento Social , Peixe-Zebra/crescimento & desenvolvimento
12.
Transl Med Commun ; 6(1): 26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805533

RESUMO

BACKGROUND: The COVID-19 pandemic remains an emerging public health crisis with serious adverse effects. The disease is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV--2) infection, targeting angiotensin-converting enzyme-2 (ACE2) receptor for cell entry. However, changes in the renin-angiotensin system (RAS) balance alter an individual's susceptibility to COVID-19 infection. We aimed to evaluate the association between AGT rs699 C > T, ACE rs4646994 I/D, and AGTR1 rs5186 C > A variants and the risk of COVID-19 infection and the severity in a sample of the southeast Iranian population. METHODS: A total of 504 subjects, including 258 COVID-19 positives, and 246 healthy controls, were recruited. Genotyping of the ACE gene rs4646994, and AGT rs699, and AGTR1 rs5186 polymorphisms was performed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP), respectively. RESULTS: Our results showed that the II genotype of ACE rs4646994 and the I allele decreased the risk of COVID-19 infection. Moreover, we found that the TC genotype and C allele of AGT rs699 increased the risk of COVID-19 infection. The AGTR1 rs5186 was not associated with COVID-19 infection. Also, we did not find any association between these polymorphisms and the severity of the disease. However, we found a significantly higher age and prevalence of diabetes and hypertension in patients with severe disease than a non-severe disease. CONCLUSIONS: These findings suggest that ACE rs4646994 and AGT rs699 polymorphisms increase the risk of COVID-19 infection in a southeast Iranian population.

13.
Environ Sci Technol ; 55(15): 10811-10820, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34236181

RESUMO

Algal blooms bring massive amounts of algal organic matter (AOM) into eutrophic lakes, which influences microbial methylmercury (MeHg) production. However, because of the complexity of AOM and its dynamic changes during algal decomposition, the relationship between AOM and microbial Hg methylators remains poorly understood, which hinders predicting MeHg production and its bioaccumulation in eutrophic shallow lakes. To address that, we explored the impacts of AOM on microbial Hg methylators and MeHg production by characterizing dissolved organic matter with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and quantifying the microbial Hg methylation gene hgcA. We first reveal that the predominance of methanogens, facilitated by eutrophication-induced carbon input, could drive MeHg production in lake water. Specifically, bioavailable components of AOM (i.e., CHONs such as aromatic proteins and soluble microbial byproduct-like materials) increased the abundances (Archaea-hgcA gene: 438-2240% higher) and activities (net CH4 production: 16.0-44.4% higher) of Archaea (e.g., methanogens). These in turn led to enhanced dissolved MeHg levels (24.3-15,918% higher) for three major eutrophic shallow lakes in China. Nevertheless, our model results indicate that AOM-facilitated MeHg production could be offset by AOM-induced MeHg biodilution under eutrophication. Our study would help reduce uncertainties in predicting MeHg production, providing a basis for mitigating the MeHg risk in eutrophic lakes.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Eutrofização , Lagos , Mercúrio/análise , Água , Poluentes Químicos da Água/análise
14.
Environ Pollut ; 284: 117377, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062438

RESUMO

The present research used zebrafish (5-28 days post-fertilization; dpf) as a model organism to investigate the effects of chronic exposure to environmentally relevant sub-lethal concentrations of waterborne (261 µg/L) and dietary zinc (Zn) (1500 mg Zn/kg dw), either independently or simultaneously, during development. The results showed that whole body contents of Zn were increased in all Zn treatment groups, with the highest accumulation of Zn observed in larvae simultaneously exposed to elevated waterborne and dietary Zn. In addition, exposure to elevated levels of Zn, either through the water or the diet, led to a decrease in whole body calcium (Ca) contents at 28 dpf. The findings also suggested that exposure to elevated levels of Zn resulted in a significant reduction in whole body manganese (Mn) contents. More importantly, the magnitude of decrease in Mn contents by Zn exposure was markedly higher than that in Ca and appeared to mirror the increases in whole body Zn accumulation. These results indicate that Mn regulation is more sensitive than Ca to disruption by Zn exposure in developing fish. Further examination of the Zrt-Irt-Like Protein (ZIP) family of transporters using droplet digital PCR technologies revealed that several zip transporters exhibited temporal and exposure route-specific changes following Zn exposure. In particular, the level of zip4 was influenced by Zn exposure regardless of the exposure routes, while changes in zip7 and zip8 levels were predominantly driven by waterborne exposure. Overall, our findings demonstrated that zebrafish during the developmental periods are sensitive to elevated levels of Zn seen in the environment, particularly following co-exposures to waterborne and dietary Zn. Future toxicological assessment of elevated Zn exposure should consider both the exposure routes and the life stages of fish.


Assuntos
Proteínas de Transporte de Cátions , Poluentes Químicos da Água , Animais , Retículo Endoplasmático/metabolismo , Larva/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Zinco/metabolismo , Zinco/toxicidade
15.
Biometals ; 34(4): 881-893, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34046781

RESUMO

Heavy metals bioremediation by medicinal plants is an important research issue, which has yet to be investigated. Matricaria chamomilla accumulation of soil cadmium (Cd, 0, 10 and 40 mg/kg) and lead (Pb, 0, 60 and 180 mg/kg) affecting plant biochemical properties L. at different growth stages in the greenhouse and field was investigated. The 10-kg experimental pots (located in the greenhouse and field with 80% of field capacity moisture) were filled with the treated soils, and were planted with M. chamomilla L. seeds (three replicates). Plants were sampled to determine their biochemical properties including Cd and Pb contents, pigments, proline (Pro), leaf relative water (LRW), lipid peroxidation (LX), and superoxide dismutase (SOD, EC 1.15. 1.1), and catalase (CAT, EC 1.11.1.6) activities. Soil final concentration of Cd and Pb was also determined. Heavy metal stress significantly decreased plant pigment contents; however, it significantly increased plant PRO, LRW, LX and SOD, and not CAT. Heavy metal, growth stage, growth location, and their interactions significantly affected plant heavy metal concentrations. Interestingly, although significantly higher concentration of Cd was observed in plant aerial part under greenhouse conditions, plant roots had significantly higher concentrations of Cd under field conditions, and it was reverse for Pb. Increased concentration of Cd and Pb significantly enhanced plant Pro content and the highest one was resulted by Pb3 (913.46 mg/g fresh weight) significantly higher than other treatments including Cd3 (595.34 mg/g fresh weight). M. chamomilla is a suitable species for the bioremediation of soils polluted with Cd and Pb.


Assuntos
Cádmio/farmacologia , Chumbo/farmacologia , Matricaria/efeitos dos fármacos , Solo/química , Cádmio/química , Relação Dose-Resposta a Droga , Chumbo/química , Matricaria/crescimento & desenvolvimento
16.
Environ Pollut ; 286: 117289, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971468

RESUMO

Elevated levels of contaminants from human activities have become a major threat to animals, particularly within aquatic ecosystems. Selenium (Se) is a naturally occurring element with a narrow range of safe intake, but excessive Se has toxicological effects, as it can bioaccumulate and cause cognitive and behavioural impairments. In this study, we investigated whether exposure to Se would also have transgenerational effects, causing changes in the descendants of exposed individuals. We exposed adult female zebrafish to either a control diet or environmentally relevant concentrations of dietary Se-Met (3.6, 12.8, 34.1 µg Se/g dry weight) for 90 days. Then, females from each treatment group were bred with untreated males, and the offspring (F1-generation) were raised to adulthood (6 months old) without Se exposure. In behavioural tests, offspring that were maternally exposed to 34.1 µg Se/g showed signs of elevated stress, weaker group preferences, and impaired social learning. Maternal exposure to high levels of Se-Met also led to dysregulation of the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter, and monoamine oxidase (MAO). Such perturbations in the serotonergic system, thus, appear to underlie the neurobehavioural deficits that we observed. These findings suggest that Se contamination can have important transgenerational consequences on social behaviour and cognition.


Assuntos
Selênio , Selenometionina , Adulto , Animais , Antioxidantes , Dieta , Ecossistema , Feminino , Humanos , Lactente , Masculino , Cognição Social , Peixe-Zebra
17.
Sci Total Environ ; 767: 144329, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33445002

RESUMO

As an essential micronutrient, selenium (Se) exerts its biological function as a catalytic entity in a variety of enzymes. From a toxicological perspective, however, Se can become extremely toxic at concentrations slightly above its nutritional levels. Over the last few decades, there has been a growing level of concern worldwide regarding the adverse effects of both inorganic and organic Se compounds on a broad spectrum of neurological functions. A wealth of evidence has shown that exposure to excess Se may compromise the normal functioning of various key proteins, neurotransmitter systems (the glutamatergic, dopaminergic, serotonergic, and cholinergic systems), and signaling molecules involved in the control and regulation of cognitive, behavioral, and neuroendocrine functions. Elevated Se exposure has also been suspected to be a risk factor for the development of several neurodegenerative and neuropsychiatric diseases. Nonetheless, despite the various deleterious effects of excess Se on the central nervous system (CNS), Se neurotoxicity and negative behavioral outcomes are still disregarded at the expense of its beneficial health effects. This review focuses on the current state of knowledge regarding the neurobehavioral effects of Se and discusses its potential mode of action on different aspects of the central and peripheral nervous systems. This review also provides a brief history of Se discovery and uses, its physicochemical properties, biological roles in the CNS, environmental occurrence, and toxicity. We also review potential links between exposure to different forms of Se compounds and aberrant neurobehavioral functions in humans and animals, and identify key knowledge gaps and hypotheses for future research.


Assuntos
Compostos de Selênio , Selênio , Animais , Dopamina , Humanos , Micronutrientes , Selênio/toxicidade , Transdução de Sinais
18.
J Environ Manage ; 280: 111843, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360255

RESUMO

Understanding the complexity and feedbacks among food, energy, and water (FEW) systems is key to making informed decisions about sustainable development. This paper presents qualitative representation and quantitative system dynamics simulation of the water resources system in the Qazvin Plain, Iran, taking into account the energy intensity of water supply and interconnected water use sectors (e.g., urban, industrial, and agricultural). Qazvin Plain faces water resources challenges that are common to arid/semi-arid areas, including frequent droughts, declining surface water and groundwater, and increased urban and agricultural water demand. A system dynamics model is developed using historical data (2006-2016) to investigate the effects of anticipated dynamics of integrated water and energy sectors in the next two decades. The results of policy scenarios (2020-2039) demonstrate that the continuation of the existing management policies will cause severe damage to the water and energy sectors, pushing the system towards water resources limits to growth. An annual groundwater table decline of nearly 1 m is anticipated, indicating significant overshoot of the plain's natural recharge capacity, which may lead to the depletion of recoverable groundwater in the plain within the next three decades. The groundwater table decline will cause energy consumption of water supply to increase by about 32% (i.e., 380 GWh) to maintain irrigated agriculture. It is critical to implement a combination of water demand and supply management policies (e.g., net agricultural water savings and recycling treated wastewater) to delay the problem of water limits to growth in the region.


Assuntos
Água Subterrânea , Água , Irã (Geográfico) , Recursos Hídricos , Abastecimento de Água
19.
Sci Total Environ ; 750: 141633, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882496

RESUMO

Bisphenol S (BPS) is increasingly used in a wide range of industrial and consumer products, resulting in its ubiquitous distribution across the environment, including aquatic ecosystems. Although it is commonly known as a weak/moderate estrogenic compound, there has been a growing acknowledgment of the potential of BPS to cause toxicity by inducing oxidative stress. Oxidative stress is a major participant in the development of anxiety-like behaviors in humans and animals. Therefore, the present study was designed to examine the impact of BPS on anxiety-like behavior and fear responses in adult zebrafish and also to elucidate the possible linkage between the BPS neurotoxicity and oxidative status of the brain. To this end, adult male and female zebrafish were exposed to 0 (control), 1, 10, and 30 µg/L of BPS and 1 µg/L of 17-ß-estradiol (E2) for 75 days. Following exposure, changes in anxiety and fear-related responses were evaluated by applying a novel tank test and by exposing focal fish to chemical alarm cues. Additionally, we evaluated the expression of multiple antioxidant genes in the zebrafish brain. Our results indicate that BPS, irrespective of exposure concentration, and E2 significantly decreased bottom-dwelling behavior and the latency to enter the upper water column. Furthermore, exposure to the highest concentration of BPS and E2 induced a significant decrease in fear-related responses. The impaired anxiety and reduced fear-related responses were associated with a down-regulation in the transcription of genes involved in enzymatic antioxidant defense. Taken together, our results suggest that chronic exposure to BPS impairs anxiety and fear responses in adult zebrafish, possibly by inducing oxidative stress in the brain.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ansiedade/induzido quimicamente , Ecossistema , Medo , Feminino , Humanos , Masculino , Estresse Oxidativo , Fenóis , Sulfonas , Poluentes Químicos da Água/toxicidade
20.
Prague Med Rep ; 121(4): 236-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270011

RESUMO

Mannose-binding lectin (MBL) is an acute phase protein which recognizes the pathogens through its carbohydrate recognition domain. It is an important part of human innate immunity. The aim of the current study was to evaluate the impact of MBL2 polymorphism on pulmonary tuberculosis in a number of patients from the southeast of Iran. In this case-control study, 2 MBL gene polymorphisms (rs1800450, rs7095891) were genotyped using PCR-RFLP method and polymerase chain reaction for detection of 34bp ins/del of MBL2 gene (rs777980157) polymorphism. The study included 170 patients with PTB (pulmonary tuberculosis) and 175 control subjects. The findings indicated that the GA (GA vs. GG: OR=0.172, 95% CI=0.107-0.275, P<0.001) (OR - odds ratio; CI - confidence interval) genotype as well as GA+AA (GA+AA vs. GG: OR=0.191, 95% CI=0.120-0.302, P<0.001) genotype of rs1800450 reduced the risk of PTB compared to GG genotype. The rs7095891 variant significantly decreased the risk of PTB in codominant (GA vs. GG: OR=0.118, 95% CI=0.054-0.258, P<0.001; and AA vs. GG: OR=0.029, 95% CI=0.01-0.082, P<0.001), dominant (GA+AA vs. GG: OR=0.095, 95% CI=0.044-0.207, P<0.001) and recessive (AA vs. GA+GG: OR=0.172, CI=0.081-0.365, P<0.001) inheritance models. No significant relationship was identified between the rs777980157 variant and PTB risk/protection. In conclusion, we found that the MBL2 rs1800450 and rs7095891 polymorphisms provide relative protection against PTB. Additional studies on larger populations with different ethnicities are required to verify our findings.


Assuntos
Predisposição Genética para Doença , Lectina de Ligação a Manose , Tuberculose , Estudos de Casos e Controles , Genótipo , Humanos , Irã (Geográfico)/epidemiologia , Lectina de Ligação a Manose/genética , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...