Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(4): 2749, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34717480

RESUMO

An analytical model for the damping and spring force coefficients of micro-electro-mechanical systems (MEMS) with a flexible diaphragm is developed. The model is based on the low reduced-frequency method, which includes thermal and viscous losses as well as inertial and compressibility effects. Specifically, the solutions are derived for circular MEMS with a clamped diaphragm with both open-edge and closed-edge boundaries. The deflection function of the circular clamped diaphragm is incorporated into the thermoviscous acoustic (TA) formulation to take into account the effect of the flexibility of the diaphragm. TA finite-element analysis (FEA) is also used to develop a computational model. The analytical results are in good agreement with the FEA results for a wide range of parameters and frequencies. The significance of the effect of the flexibility of the diaphragm on damping for actual MEMS is demonstrated. Measurements of the damping coefficient of circular MEMS are conducted for experimental validation of the presented model. The small difference between the experimental results and the results from the model (less than 6%) validates the accuracy of the presented model. The proposed analytical model can be applied to MEMS with various geometries and boundary conditions.

2.
Micromachines (Basel) ; 13(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35056187

RESUMO

Audio applications such as mobile phones, hearing aids, true wireless stereo earphones, and Internet of Things devices demand small size, high performance, and reduced cost. Microelectromechanical system (MEMS) capacitive microphones fulfill these requirements with improved reliability and specifications related to sensitivity, signal-to-noise ratio (SNR), distortion, and dynamic range when compared to their electret condenser microphone counterparts. We present the design and modeling of a semiconstrained polysilicon diaphragm with flexible springs that are simply supported under bias voltage with a center and eight peripheral protrusions extending from the backplate. The flexible springs attached to the diaphragm reduce the residual film stress effect more effectively compared to constrained diaphragms. The center and peripheral protrusions from the backplate further increase the effective area, linearity, and sensitivity of the diaphragm when the diaphragm engages with these protrusions under an applied bias voltage. Finite element modeling approaches have been implemented to estimate deflection, compliance, and resonance. We report an 85% increase in the effective area of the diaphragm in this configuration with respect to a constrained diaphragm and a 48% increase with respect to a simply supported diaphragm without the center protrusion. Under the applied bias, the effective area further increases by an additional 15% as compared to the unbiased diaphragm effective area. A lumped element model has been also developed to predict the mechanical and electrical behavior of the microphone. With an applied bias, the microphone has a sensitivity of -38 dB (ref. 1 V/Pa at 1 kHz) and an SNR of 67 dBA measured in a 3.25 mm × 1.9 mm × 0.9 mm package including an analog ASIC.

3.
J Acoust Soc Am ; 148(4): 2376, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33138523

RESUMO

An analytical model based on the low reduced-frequency method is developed for the damping and spring force coefficients of micro-electro-mechanical systems (MEMS) structures. The model is based on a full-plate approach that includes thermal and viscous losses and hole end effects, as well as inertial and compressibility effects. Explicit analytical formulas are derived for damping and spring forces of perforated circular MEMS with open and closed edge boundary conditions. A thermo-viscous finite-element method (FEM) model is also developed for the numerical solution of the problem. Results for the damping and spring coefficients from the analytical models are in good agreement with the FEM results over a large range of frequencies and parameters. The analytic formulas obtained for the damping and spring coefficients provide a useful tool for the design and optimization of perforated MEMS. Specifically, it is shown that for a fixed perforation ratio of the back-plate the radius of the holes can be optimized to minimize the damping.

4.
J Acoust Soc Am ; 146(4): EL399, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31671983

RESUMO

Micro-perforated plates (MPPs) are acoustically important elements in micro-electro-mechanical systems (MEMS). In this work an analytical solution for perforated plates is combined with finite element method (FEM) to develop formulas for the reactive and resistive end effects of the perforations on the plate. The reactive end effect is found to depend on the hole radius and porosity. The resistive end effect is found to depend on hole radius only. FEM is also used to develop an understanding of the loss mechanism that corresponds to the resistive end effects. The developed models can be used in optimization studies of the MEMS and MPPs.

6.
J Acoust Soc Am ; 144(5): 2838, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30522283

RESUMO

This work examines the extent to which thermal boundary layer effects limit the performance of micromachined microphones. The acoustic impedance of the cavity formed by the microphone enclosure is calculated using both analytical and finite-element methods. A thermal correction to the cavity impedance is included to account for the transition of compression and expansion within the enclosure from adiabatic to isothermal when the thermal boundary layer that forms at the walls of the enclosure becomes large compared to the enclosure dimensions. The thermal correction to the cavity impedance contains a resistive term that results from thermal relaxation losses and contributes thermal-acoustic noise to the system. A lumped-element network model for the microphone response which includes the thermally corrected enclosure impedance is presented and compared to measured results for a case study device. The relative noise power contribution of each noise source considered in the model is calculated. It is shown that the noise due to the resistive term of the enclosure cavity impedance becomes significant when the enclosure volume is small. This sets a theoretical limit on the noise floor that can be achieved by a micromachined microphone with given enclosure dimensions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...