Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HLA ; 102(5): 599-606, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37580306

RESUMO

Analysis of publicly available whole-genome sequence data from the Human Pangenome Project and the 1000 Genomes Project has identified a DNA segment of approximately 60 kb in the major histocompatibility complex (MHC) between HLA-W and HLA-J that is present in some MHC haplotypes but not others. This DNA segment is largely repeat element-rich but includes the pseudogene HLA-Y, thus pinpointing the location of this pseudogene, and a new HLA class I sequence we have called HLA-OLI. HLA-OLI clusters phylogenetically with the HLA class I pseudogenes, HLA-P and HLA-W, and appears to have a similar genetic structure. The availability of whole-genome sequence data from diverse populations enables a detailed characterization of the MHC at the population level and will have implications for understanding MHC disease associations and the non-HLA MHC factors that impact unrelated hematopoietic cell transplant outcomes.

2.
Genes (Basel) ; 11(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255795

RESUMO

Polyploidization has played a prominent role in the evolutionary history of plants. Two recent and sequential allopolyploidization events have resulted in the formation of wheat species with different ploidies, and which provide a model to study the effects of polyploidization on the evolution of gene expression. In this study, we identified differentially expressed genes (DEGs) between four BBAA tetraploid wheats of three different ploidy backgrounds. DEGs were found to be unevenly distributed among functional categories and duplication modes. We observed more DEGs in the extracted tetraploid wheat (ETW) than in natural tetraploid wheats (TD and TTR13) as compared to a synthetic tetraploid (AT2). Furthermore, DEGs showed higher Ka/Ks ratios than those that did not show expression changes (non-DEGs) between genotypes, indicating DEGs and non-DEGs experienced different selection pressures. For A-B homeolog pairs with DEGs, most of them had only one differentially expressed copy, however, when both copies of a homeolog pair were DEGs, the A and B copies were more likely to be regulated to the same direction. Our results suggest that both cis- and inter-subgenome trans-regulatory changes are important drivers in the evolution of homeologous gene expression in polyploid wheat, with ploidy playing a significant role in the process.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Genoma de Planta/genética , Triticum/genética , Evolução Molecular , Genótipo , Poliploidia , Tetraploidia
3.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912903

RESUMO

Aspergillus flavus and Aspergillus parasiticus produce carcinogenic aflatoxins during crop infection, with extensive variations in production among isolates, ranging from atoxigenic to highly toxigenic. Here, we report draft genome sequences of one A. parasiticus isolate and nine A. flavus isolates from field environments for use in comparative, functional, and phylogenetic studies.

4.
G3 (Bethesda) ; 10(10): 3515-3531, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32817124

RESUMO

Efforts in genome sequencing in the Aspergillus genus have led to the development of quality reference genomes for several important species including A. nidulans, A. fumigatus, and A. oryzae However, less progress has been made for A. flavus As part of the effort of the USDA-ARS Annual Aflatoxin Workshop Fungal Genome Project, the isolate NRRL3357 was sequenced and resulted in a scaffold-level genome released in 2005. Our goal has been biologically driven, focusing on two areas: isolate variation in aflatoxin production and drought stress exacerbating aflatoxin production by A. flavus Therefore, we developed two reference pseudomolecule genome assemblies derived from chromosome arms for two isolates: AF13, a MAT1-2, highly stress tolerant, and highly aflatoxigenic isolate; and NRRL3357, a MAT1-1, less stress tolerant, and moderate aflatoxin producer in comparison to AF13. Here, we report these two reference-grade assemblies for these isolates through a combination of PacBio long-read sequencing and optical mapping, and coupled them with comparative, functional, and phylogenetic analyses. This analysis resulted in the identification of 153 and 45 unique genes in AF13 and NRRL3357, respectively. We also confirmed the presence of a unique 310 Kb insertion in AF13 containing 60 genes. Analysis of this insertion revealed the presence of a bZIP transcription factor, named atfC, which may contribute to isolate pathogenicity and stress tolerance. Phylogenomic analyses comparing these and other available assemblies also suggest that the species complex of A. flavus is polyphyletic.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Sequência de Bases , Genoma Fúngico , Filogenia
5.
Plant Cell Environ ; 41(9): 2033-2044, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29314059

RESUMO

Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a polyploidy event ~59 MYA, followed by a Glycine-specific whole genome duplication (WGD) ~8-13 MYA. Duplicated genes were classified into five categories: singletons, dispersed, proximal, tandem, or WGD/segmental and found strong correlations between gene category and functional annotation. Photosynthesis and transcriptional regulation-related Gene Ontology terms were significantly over-represented in singletons and WGD genes, respectively, aligning with the gene balance hypothesis. We found that the divergence of gene expression and DNA methylation between WGD-derived paralogs increased with age and that WGD genes, initially retained via dosage constraints, subsequently underwent expression divergence, associated with other factors such as DNA methylation. Genes derived from different modes of duplication differed in breadth, level, and specificity of expression in both species. Orthologous genes and ungrouped genes (genes not in an ortholog group) differed in expression patterns. The protein divergence rates of WGD paralog pairs containing an ungrouped gene were higher than those for which both copies had orthologs. We propose that many ungrouped genes are derived from divergent and redundant gene copies, concordant with the neofunctionalization hypothesis. Tandemly duplicated genes were distinct from WGD-derived genes, indicating that mode of duplication contributes to the evolutionary fate of duplicated genes.


Assuntos
Epigênese Genética , Genes Duplicados , Genes de Plantas , Glycine max/genética , Phaseolus/genética , Metilação de DNA , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genética Populacional , Genoma de Planta
6.
BMC Genomics ; 16: 467, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26084707

RESUMO

BACKGROUND: Single-stranded non-protein coding small RNAs, 18-25 nucleotides in length, are ubiquitous throughout plants genomes and are involved in post-transcriptional gene regulation. Several types of DNA markers have been reported for the detection of genetic diversity or sequence variation in soybean, one of the most important legume crops in worldwide for seed protein and oil content. Recently, with the available of public genomic databases, there has been a shift from the labor-intensive development of PCR-based markers to sequence-based genotyping and the development of functional markers within genes, often coupled with the use of RNA information. But thus far miRNA-based markers have been only developed in rice and tobacco. Here we report the first functional molecular miRNA marker, miR1511-InDel, in soybean for a specific single copy locus used to assess genetic variation in domesticated soybean (Glycine max [L.] Merr) and its wild progenitor (Glycine soja Sieb. & Zucc.). RESULTS: We genotyped a total of 1,669 accessions of domesticated soybean (G. max) and its wild progenitor G. soja which are native throughout the China and parts of Korea, Japan and Russia. The results indicate that the miR1511 locus is distributed in cultivated soybean and has three alleles in annual wild soybean. Based on this result, we proposed that miR-InDel marker technology can be used to assess genetic variation. The inclusion of geo-reference data with miR1511-InDel marker data corroborated that accessions from the Yellow River basin (Huanghuai) exhibited high genetic diversity which provides more molecular evidence for gene diversity in annual wild soybean and domestication of soybean. CONCLUSIONS: These results provide evidence for the use of RNA marker, miRNA1511-InDel, as a soybean-specific functional maker for the study of genetic diversity, genotyping of germplasm and evolution studies. This is also the first report of functional marker developed from soybean miRNA located within the functional region of pre-miRNA1511.


Assuntos
Marcadores Genéticos/genética , Glycine max/genética , Mutação INDEL/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , China , Genoma de Planta/genética , Genótipo , Japão , Filogenia , República da Coreia , Federação Russa , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...