Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37763827

RESUMO

The performance of the graphene-based field-effect transistor (FET) as a biosensor is based on the output drain current (Id). In this work, the signal-to-noise ratio (SNR) was investigated to obtain a high-performance device that produces a higher Id value. Using the finite element method, a novel top-gate FET was developed in a three-dimensional (3D) simulation model with the titanium dioxide-reduced graphene oxide (TiO2-rGO) nanocomposite as the transducer material, which acts as a platform for biosensing application. Using the Taguchi mixed-level method in Minitab software (Version 16.1.1), eighteen 3D models were designed based on an orthogonal array L18 (6134), with five factors, and three and six levels. The parameters considered were the channel length, electrode length, electrode width, electrode thickness and electrode type. The device was fabricated using the conventional photolithography patterning technique and the metal lift-off method. The material was synthesised using the modified sol-gel method and spin-coated on top of the device. According to the results of the ANOVA, the channel length contributed the most, with 63.11%, indicating that it was the most significant factor in producing a higher Id value. The optimum condition for the highest Id value was at a channel length of 3 µm and an electrode size of 3 µm × 20 µm, with a thickness of 50 nm for the Ag electrode. The electrical measurement in both the simulation and experiment under optimal conditions showed a similar trend, and the difference between the curves was calculated to be 28.7%. Raman analyses were performed to validate the quality of TiO2-rGO.

2.
Crit Rev Anal Chem ; : 1-12, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358486

RESUMO

Since diagnostic laboratories handle large COVID-19 samples, researchers have established laboratory-based assays and developed biosensor prototypes. Both share the same purpose; to ascertain the occurrence of air and surface contaminations by the SARS-CoV-2 virus. However, the biosensors further utilize internet-of-things (IoT) technology to monitor COVID-19 virus contamination, specifically in the diagnostic laboratory setting. The IoT-capable biosensors have great potential to monitor for possible virus contamination. Numerous studies have been done on COVID-19 virus air and surface contamination in the hospital setting. Through reviews, there are abundant reports on the viral transmission of SARS-CoV-2 through droplet infections, person-to-person close contact and fecal-oral transmission. However, studies on environmental conditions need to be better reported. Therefore, this review covers the detection of SARS-CoV-2 in airborne and wastewater samples using biosensors with comprehensive studies in methods and techniques of sampling and sensing (2020 until 2023). Furthermore, the review exposes sensing cases in public health settings. Then, the integration of data management together with biosensors is well explained. Last, the review ended with challenges to having a practical COVID-19 biosensor applied for environmental surveillance samples.

3.
Crit Rev Anal Chem ; 52(3): 637-648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32997522

RESUMO

Biosensors operating based on electrical methods are being accelerated toward rapid and efficient detection that improve the performance of the device. Continuous study in nano- and material-sciences has led to the inflection with properties of nanomaterials that fit the trend parallel to the biosensor evolution. Advancements in technology that focuses on nano-hybrid are being used to develop biosensors with better detection strategies. In this sense, titanium dioxide (TiO2) nanomaterials have attracted extensive interest in the construction of electrical biosensors. The formation of TiO2 nano-hybrid as an electrical transducing material has revealed good results with high performance. The modification of the sensing portion with a combination (nano-hybrid form) of nanomaterials has produced excellent sensors in terms of stability, reproducibility, and enhanced sensitivity. This review highlights recent research advancements with functional TiO2 nano-hybrid materials, and their victorious story in the construction of electrical biosensors are discussed. Future research directions with commercialization of these devices and their extensive utilizations are also discussed.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Reprodutibilidade dos Testes , Titânio
4.
Biotechnol Appl Biochem ; 69(5): 1966-1983, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34554606

RESUMO

The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.


Assuntos
Nanopartículas Metálicas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 18/genética , Neoplasias do Colo do Útero/diagnóstico , Ouro , Infecções por Papillomavirus/diagnóstico , Papillomaviridae/genética , Sondas de DNA , Proteínas Oncogênicas Virais/genética
5.
Crit Rev Anal Chem ; 52(7): 1511-1523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34092138

RESUMO

The importance of nanotechnology in medical applications especially with biomedical sensing devices is undoubted. Several medical diagnostics have been developed by taking the advantage of nanomaterials, especially with electrical biosensors. Biosensors have been predominantly used for the quantification of different clinical biomarkers toward detection, screening, and follow-up the treatment. At present, ovarian cancer is one of the severe complications that cannot be identified until it becomes most dangerous as the advanced stage. Based on the American Cancer Society, 20% of cases involved in the detection of ovarian cancer are diagnosed at an early stage and 80% diagnosed at the later stages. The patient just has a common digestive problem and stomach ache as early symptoms and people used to ignore these symptoms. Micro ribonucleic acid (miRNA) is classified as small non-coding RNAs, their expressions change due to the association of cancer development and progression. This article reviews and discusses on the currently available strategies for the early detection of ovarian cancers using miRNA as a biomarker associated with electrical biosensors. A unique miRNA-based biomarker detections are specially highlighted with biosensor platforms to diagnose ovarian cancer.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Neoplasias Ovarianas , Biomarcadores , Detecção Precoce de Câncer , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Nanotecnologia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética
6.
Mikrochim Acta ; 187(4): 235, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32185529

RESUMO

A titanium dioxide nanoparticle (TiO2 NP)-mediated resistive biosensor is described for the determination of DNA fragments of Escherichia coli O157:H7 (E. coli O157:H7). The sol-gel method was used to synthesize the TiO2 NP, and microlithography was applied to fabricate the interdigitated sensor electrodes. Conventional E. coli DNA detections are facing difficulties in long-preparation-and-detection-time (more than 3 days). Hence, electronic biosensor was introduced by measuring the current-voltage (I-V) DNA probe without amplification of DNA fragments. The detection scheme is based on the interaction between the electron flow on the sensor and the introduction of negative charges from DNA probe and target DNA. The biosensor has a sensitivity of 1.67 × 1013 Ω/M and a wide analytical range. The limit detection is down to 1 × 10-11 M of DNA. The sensor possesses outstanding repeatability and reproducibility and is cabable to detect DNA within 15 min in a minute-volume sample (1 µL). Graphical abstract Fig. (a) Graphical illustration of electronic biosensor set up and (b) relationship between limit of detection (LOD) and the unaffected poultry samples on E. coli O157:H7.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli O157/isolamento & purificação , Titânio/química , Técnicas Biossensoriais/normas , DNA Bacteriano/análise , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Nanopartículas/química , Reprodutibilidade dos Testes
7.
PLoS One ; 10(10): e0139766, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445455

RESUMO

Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.


Assuntos
Técnicas Biossensoriais/instrumentação , DNA Bacteriano/genética , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Nanopartículas/química , Titânio/química , DNA Bacteriano/análise , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Infecções por Escherichia coli/microbiologia , Microbiologia de Alimentos , Humanos , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/genética , Hibridização de Ácido Nucleico , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...