Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 89(3): 642-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18442116

RESUMO

This study focuses on the selective binding of albumin to a nanostructured surfaces to inhibit other blood proteins from adsorbing thereby reducing platelet adhesion and activation. Tetra (ethylene-glycol)-terminated self-assembled monolayers (EG4 SAMs) with different percentages of C18 ligands on the surface were characterized by contact angle measurements, X-ray photoelectron microscopy, infrared reflection-absorption spectroscopy, and ellipsometry. A specific surface (2.5% C18 SAM) was found to be selective for human serum albumin (HSA) in the presence of both albumin and fibrinogen (HFG). The importance of this concentration of C18 ligands was stressed in reversibility studies since that surface exchanged almost all the preadsorbed HSA by HSA in solution, but not by HFG. The effect of protein adsorption in the subsequent adhesion and activation of platelets was studied by pre-immersing the surfaces in albumin and plasma before contact with platelets. Scanning electron microscopy and glutaraldehyde induced fluorescence technique images showed that as surfaces got more hydrophobic due to the immobilization of C18 ligands, the number of adherent platelets increased and their morphology changed from round to fully spread. Pre-immersion in HSA led to an 80% decrease in platelet adhesion and reduction of activation. Pre-immersion in 1% plasma was only relevant in 2.5% C18 SAMs since this was the only surface that demonstrated less adhesion of platelets comparing with buffer pre-immersion. However, they still adsorb more platelets then when HSA was preadsorbed. This was confirmed in competition studies between HSA and plasma that suggested that other plasma proteins were also adsorbing to this surface.


Assuntos
Carbono/metabolismo , Etilenoglicol/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Albumina Sérica/metabolismo , Adsorção/efeitos dos fármacos , Plaquetas/citologia , Forma Celular/efeitos dos fármacos , Humanos , Ligantes , Espectrofotometria Infravermelho , Propriedades de Superfície/efeitos dos fármacos
2.
J Mater Sci Mater Med ; 14(11): 945-54, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15348506

RESUMO

Self-assembled monolayers can be tailored with specific ligands to a certain protein and at the same time prevent the non-specific adsorption of other proteins. Cibacron Blue F3G-A (CB-thiol) was successfully immobilized onto tetra(ethylene glycol)-terminated alkanethiol (CB-thiol). The affinity of human serum albumin (HSA) to immobilized Cibacron Blue F3G-A was studied using mixed thiolate self-assembled monolayers on gold with different n-alkyl chain lengths and functional terminal groups (CH(3)-; OH- and tetra(ethylene glycol)). Surfaces were characterized using X-ray photoelectron spectroscopy and water contact angle measurements. Albumin adsorption and exchangeability of the adsorbed albumin molecules with other albumin molecules in solution were evaluated using (125)I-radiolabeled HSA. Competitive adsorption between albumin and fibrinogen to the different self-assembled monolayers (SAMs) was also investigated. Results showed that the incorporation of CB-thiol on the monolayers does not increase the HSA adsorption and reversibility on the SAMs. However, although specific adsorption of HSA to the immobilized Cibacron Blue F3G-A was not demonstrated, the presence of CB-thiol decreases the affinity of fibrinogen to the OH-terminated SAMs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...