Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(22): 33145-33156, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114983

RESUMO

Dihedral corner reflector arrays (DCRAs) are imaging devices that form real images and are used in a variety of applications, including floating virtual touchscreens and image presentation around physical objects. However, they induce several types of degradations to floating images. It is desirable to suppress these degradations to provide better viewing experiences. This paper proposes a method of suppressing degradations which appear as high-frequency noise by using mechanical vibration. The effects of vibrating the DCRA were confirmed through an analysis of the floating image quality in the frequency domain.

2.
IEEE Trans Pattern Anal Mach Intell ; 40(11): 2725-2739, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29989964

RESUMO

We present an accurate stereo matching method using local expansion moves based on graph cuts. This new move-making scheme is used to efficiently infer per-pixel 3D plane labels on a pairwise Markov random field (MRF) that effectively combines recently proposed slanted patch matching and curvature regularization terms. The local expansion moves are presented as many -expansions defined for small grid regions. The local expansion moves extend traditional expansion moves by two ways: localization and spatial propagation. By localization, we use different candidate -labels according to the locations of local -expansions. By spatial propagation, we design our local -expansions to propagate currently assigned labels for nearby regions. With this localization and spatial propagation, our method can efficiently infer MRF models with a continuous label space using randomized search. Our method has several advantages over previous approaches that are based on fusion moves or belief propagation; it produces submodular moves deriving a subproblem optimality; it helps find good, smooth, piecewise linear disparity maps; it is suitable for parallelization; it can use cost-volume filtering techniques for accelerating the matching cost computations. Even using a simple pairwise MRF, our method is shown to have best performance in the Middlebury stereo benchmark V2 and V3.

3.
Microsc Res Tech ; 79(6): 480-94, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27062314

RESUMO

The 3D wide-field fluorescence microscopy suffers from depth-variant asymmetric blur. The depth-variance and axial asymmetry are due to refractive index mismatch between the immersion and the specimen layer. The radial asymmetry is due to lens imperfections and local refractive index inhomogeneities in the specimen. To obtain the PSF that has these characteristics, there were PSF premeasurement trials. However, they are useless since imaging conditions such as camera position and refractive index of the specimen are changed between the premeasurement and actual imaging. In this article, we focus on removing unknown depth-variant asymmetric blur in such an optical system under the assumption of refractive index homogeneities in the specimen. We propose finding few parameters in the mathematical PSF model from observed images in which the PSF model has a depth-variant asymmetric shape. After generating an initial PSF from the analysis of intensities in the observed image, the parameters are estimated based on a maximum likelihood estimator. Using the estimated PSF, we implement an accelerated GEM algorithm for image deconvolution. Deconvolution result shows the superiority of our algorithm in terms of accuracy, which quantitatively evaluated by FWHM, relative contrast, standard deviation values of intensity peaks and FWHM. Microsc. Res. Tech. 79:480-494, 2016. © 2016 Wiley Periodicals, Inc.

4.
Sci Rep ; 5: 9894, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950821

RESUMO

This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization.

5.
IEEE Trans Vis Comput Graph ; 15(5): 841-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19590109

RESUMO

The system described in this paper provides a real-time 3D visual experience by using an array of 64 video cameras and an integral photography display with 60 viewing directions. The live 3D scene in front of the camera array is reproduced by the full-color, full-parallax autostereoscopic display with interactive control of viewing parameters. The main technical challenge is fast and flexible conversion of the data from the 64 multicamera images to the integral photography format. Based on image-based rendering techniques, our conversion method first renders 60 novel images corresponding to the viewing directions of the display, and then arranges the rendered pixels to produce an integral photography image. For real-time processing on a single PC, all the conversion processes are implemented on a GPU with GPGPU techniques. The conversion method also allows a user to interactively control viewing parameters of the displayed image for reproducing the dynamic 3D scene with desirable parameters. This control is performed as a software process, without reconfiguring the hardware system, by changing the rendering parameters such as the convergence point of the rendering cameras and the interval between the viewpoints of the rendering cameras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...