Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26465545

RESUMO

We discuss the properties of nonlinear localized modes in sawtooth lattices, in the framework of a discrete nonlinear Schrödinger model with general on-site nonlinearity. Analytic conditions for existence of exact compact three-site solutions are obtained, and explicitly illustrated for the cases of power-law (cubic) and saturable nonlinearities. These nonlinear compact modes appear as continuations of linear compact modes belonging to a flat dispersion band. While for the linear system a compact mode exists only for one specific ratio of the two different coupling constants, nonlinearity may lead to compactification of otherwise noncompact localized modes for a range of coupling ratios, at some specific power. For saturable lattices, the compactification power can be tuned by also varying the nonlinear parameter. Introducing different on-site energies and anisotropic couplings yields further possibilities for compactness tuning. The properties of strongly localized modes are investigated numerically for cubic and saturable nonlinearities, and in particular their stability over large parameter regimes is shown. Since the linear flat band is isolated, its compact modes may be continued into compact nonlinear modes both for focusing and defocusing nonlinearities. Results are discussed in relation to recent realizations of sawtooth photonic lattices.

2.
Phys Rev Lett ; 112(7): 074101, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579602

RESUMO

The semiclassical and quantum dynamics of two ultrastrongly coupled nonlinear resonators cannot be explained using the discrete nonlinear Schrödinger equation or the Bose-Hubbard model, respectively. Instead, a model beyond the rotating wave approximation must be studied. In the semiclassical limit this model is not integrable and becomes chaotic for a finite window of parameters. For the quantum dimer we find corresponding regions of stability and chaos. The more striking consequence for both semiclassical and quantum chaos is that the tunneling time between the sites becomes unpredictable. These results, including the transition to chaos, can be tested in experiments with superconducting microwave resonators.


Assuntos
Modelos Teóricos , Dinâmica não Linear , Teoria Quântica
3.
Artigo em Inglês | MEDLINE | ID: mdl-23848755

RESUMO

We explore the fundamental question of the critical nonlinearity value needed to dynamically localize energy in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the profile to determine the transition into localization in one-, two-, and three-dimensional lattices. A simple and general criterion is developed, for the case of an initially localized excitation, to define the transition region in parameter space ("dynamical tongue") from a delocalized to a localized profile. We introduce a method for computing the dynamically excited frequencies, which helps us validate our stationary ansatz approach and the effective frequency concept. A general analytical estimate of the critical nonlinearity is obtained, with an extra parameter to be determined. We find this parameter to be almost constant for two-dimensional systems and prove its validity by applying it successfully to two-dimensional binary lattices.

4.
Opt Express ; 21(1): 927-34, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388986

RESUMO

We show, numerically and experimentally, that the presence of weak disorder results in an enhanced energy distribution of an initially localized wave-packet, in one- and two-dimensional finite lattices. The addition of a focusing nonlinearity facilitates the spreading effect even further by increasing the wave-packet effective size. We find a clear transition between the regions of enhanced spreading (weak disorder) and localization (strong disorder).

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036601, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517610

RESUMO

We address the problem of directional mobility of discrete solitons in two-dimensional rectangular lattices, in the framework of a discrete nonlinear Schrödinger model with saturable on-site nonlinearity. A numerical constrained Newton-Raphson method is used to calculate two-dimensional Peierls-Nabarro energy surfaces, which describe a pseudopotential landscape for the slow mobility of coherent localized excitations, corresponding to continuous phase-space trajectories passing close to stationary modes. Investigating the two-parameter space of the model through independent variations of the nonlinearity constant and the power, we show how parameter regimes and directions of good mobility are connected to the existence of smooth surfaces connecting the stationary states. In particular, directions where solutions can move with minimum radiation can be predicted from flatter parts of the surfaces. For such mobile solutions, slight perturbations in the transverse direction yield additional transverse oscillations with frequencies determined by the curvature of the energy surfaces, and with amplitudes that for certain velocities may grow rapidly. We also describe how the mobility properties and surface topologies are affected by inclusion of weak lattice anisotropy.


Assuntos
Dinâmica não Linear , Fenômenos Físicos , Anisotropia , Movimento (Física)
6.
Opt Lett ; 36(8): 1467-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21499392

RESUMO

We theoretically study the properties of one-dimensional nonlinear saturable photonic lattices exhibiting multiple mobility windows for stationary solutions. The effective energy barrier decreases to a minimum in those power regions where a new intermediate stationary solution appears. As an application, we investigate the dynamics of high-power Gaussian-like beams finding several regions where the light transport is enhanced.

7.
Opt Lett ; 34(18): 2721-3, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19756083

RESUMO

We study a waveguide array with an embedded nonlinear saturable impurity. We solve the impurity problem in closed form and find the nonlinear localized modes. Next, we consider the scattering of a small-amplitude plane wave by a nonlinear impurity mode, and discover regions in parameter space where transmission is fully suppressed. We relate these findings with Fano resonances and propose this setup as a means to control the transport of light across the array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...