Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e11663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395065

RESUMO

Eutrophication with dissolved organic carbon (DOC) as a far under-investigated stressor, and ocean warming, can strongly affect coral reefs and hard corals as major reefs ecosystem engineers. However, no previous studies have investigated the metabolic responses of soft corals to DOC eutrophication, or its interaction with ocean warming. Thus, we investigated respiration and photosynthesis response of Xenia umbellata, a common mixotrophic soft coral from the Indo-pacific, to (1) three levels of DOC eutrophication simulated by glucose addition over the first 21 days of experiment and (2) ocean warming scenarios where the temperature was gradually increased from 26 °C (control condition) to 32 °C over another 24 days in an aquarium experiment. We found no significant difference in response to DOC treatments and all corals survived regardless of the DOC concentrations, whilst subsequent exposure to simulated ocean warming significantly decreased gross photosynthesis by approximately 50% at 30 °C, and 65% at 32 °C, net photosynthesis by 75% at 30 °C and 79% at 32 °C, and respiration by a maximum of 75% at 30 °C; with a slight increase at 32 °C of 25%. The ratio between gross photosynthesis and respiration decreased by the end of the warming period but remained similar between controls and colonies previously exposed to DOC. Our findings suggest that soft corals may be more resistant than hard corals to DOC eutrophication and in consequence, may potentially experiment in less magnitude the negative effects of increased temperature or subsequently both stressors. The results of this study may contribute to explain the successful role of soft corals in phase shifts as reported from many coral reefs. Where predicted declines in reef ecosystems health due to increased eutrophication levels can be exacerbated by future warming.

2.
Mar Pollut Bull ; 168: 112430, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34000709

RESUMO

Nitrogen cycling in coral reefs may be affected by nutrient availability, but knowledge about concentration-dependent thresholds that modulate dinitrogen fixation and denitrification is missing. We determined the effects of different nitrate concentrations (ambient, 1, 5, 10 µM nitrate addition) on both processes under two light scenarios (i.e., light and dark) using a combined acetylene assay for two common benthic reef substrates, i.e., turf algae and coral rubble. For both substrates, dinitrogen fixation rates peaked at 5 µM nitrate addition in light, whereas denitrification was highest at 10 µM nitrate addition in the dark. At 10 µm nitrate addition in the dark, a near-complete collapse of dinitrogen fixation concurrent with a 76-fold increase in denitrification observed for coral rubble, suggesting potential threshold responses linked to the nutritional state of the community. We conclude that dynamic nitrogen cycling activity may help stabilise nitrogen availability in microbial communities associated with coral reef substrates.


Assuntos
Antozoários , Recifes de Corais , Animais , Desnitrificação , Nitratos , Fixação de Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...