Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4617, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409468

RESUMO

In recent years, the power conversion efficiency (PCE (%)) of perovskite solar cells (PSCs) has improved to over 26%. To enhance the photovoltaic properties of PSCs, several materials for the electron transport layer (ETL) have been investigated. Zinc oxide (ZnO) is a significant ETL due to its high electron mobility and optical transparency in PSCs. As a result of various deposition methods, ZnO ETL can be processed at low temperatures. On the other hand, based on several studies, metal-doped ZnO can facilitate electron transfer, thereby improving the performance of un-doped ZnO ETL-based PSCs. Here, to improve the PCE (%) and long-term stability of un-doped ZnO ETL-PSCs, silver (Ag)-doped ZnO 1wt% as a buffer layer is examined. In this paper, with the addition of an organic solvent (ethanol) to the dispersion of Ag-doped ZnO 1 wt% nanoparticles (NPs) in deionized (DI) water, the morphology of the buffer layer (Ag-doped ZnO 1 wt%) can be controlled. This approach focuses on reducing the wettability of the ZnO/Ag-doped ZnO 1 wt% bilayer ETLs and enhancing the stability of un-doped ZnO ETL-PSCs. According to the results, the ZnO/H2O-ethanol mixtures-Ag-doped ZnO 1 wt% bilayer ETL leads to the formation of high-quality perovskite with low defects, reducing the recombination rate, and long-term stability of un-doped ZnO ETL-PSCs in ambient conditions.

2.
Sci Rep ; 12(1): 16600, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198755

RESUMO

In the present paper, the interrelated aspects of additive manufacturing-microstructure-property in directed energy deposition of SS316L-IN718 multi-material were studied through numerical modeling and experimental evaluation. The printability concept and solidification principles were used for this purpose. The printability analysis showed that the SS316L section is more susceptible to composition change and lack of fusion, respectively due to the high equilibrium vapor pressure of manganese and the more efficient heat loss in the initial layers. However, the IN718 section is more prone to distortion due to the formation of a larger melt pool, with a maximum thermal strain of 3.95 × 10-3 in the last layer. As the process continues, due to heat accumulation and extension of the melt pool, the cooling rate decreases and the undercooling level increases, which respectively result in coarser microstructure and more instability of solidification front in the build direction, as also observed in the experimental results. The difference is that the dendritic microstructure of the IN718 section, due to the eutectic reaction L → γ + Laves, is formed on a smaller scale compared to the cellular microstructure of the SS316L section. Also, the decrease in cooling rate caused the secondary phase fraction in each section (delta ferrite in SS316L and Laves in IN718) to increase almost linearly. However, the hardness calculation and measurement showed similarly, even though with the transition from SS316L to IN718 the hardness is significantly increased due to higher yield strength of the matrix and the presence of Laves intermetallic phase (~ 260 HV0.3), the hardness in each section decreases slightly due to the coarsening of the microstructure from the initial layer to the final.

3.
Dent Mater ; 37(3): 547-558, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33461762

RESUMO

OBJECTIVE: Micro-nano scale surface modification of Ti-6Al-4V was investigated through the fascinated modern fiber engraving laser method. The process was performed at a high laser speed of 2000mm/s, under different laser frequencies (20-160kHz) and groove distances (0.5-50µm). METHODS: Topographic evaluations such as Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FE-SEM) were used to identify the quality and regularity of patterns. The proliferation of human osteoblast-like osteosarcoma cells (MG63) was analyzed by MTT assay for up to 72h. Also, the plate counting method was used to quantify the viability potential of the modified surface against Escherichia coli bacteria. RESULTS: The cellular viability of the sample modified at the laser frequency of 20kHz and grooving distance of 50µm increased up to 35 and 10% compared to the non-treated and control samples, respectively. In the case of the surface modification at lower grooving distances range between 0.5-50µm, the maximum laser frequency (160kHz) applied leads to lower pulse's energies and less bacterial adhesion. Otherwise, at groove distances more than 50µm, the minimum laser frequency (20kHz) applied reduces the laser pulse overlaps, increases the cell adhesion and antibacterial properties. SIGNIFICANCE: Surface modification by the fiber engraving laser process significantly enhances the cell adhesion on the surface. As a result of such roughness and cell adhesion enhancement, the surface toxicity feature diminished, and its antibacterial properties improved.


Assuntos
Implantes Dentários , Titânio , Antibacterianos/farmacologia , Adesão Celular , Gravuras e Gravação , Humanos , Lasers , Propriedades de Superfície
4.
Mater Sci Eng C Mater Biol Appl ; 109: 110637, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228969

RESUMO

Titanium alloys are commonly used in orthopedic devices due to their good corrosion resistance, high specific strength and excellent biological response. The direct contact between the implant surface and the host tissue results in notable effect of surface properties such as surface topography on the biological responses. The aim of this study is to investigate the effect of frequency of pulsed Nd-YAG laser on Ti6Al4V alloy surface topography and its influence on the improvement of biocompatibility while other laser parameters kept constant. The range of applied frequency values were selected from 1 to 20 Hz. The range of surface roughness was found between 452 nm and 3.37 µm. The untreated sample and also samples with the highest and the lowest average surface roughness parameter were subjected to the further analyses. Characterization of the samples was performed with surface roughness tester, Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The high rate of melt and solidification during the laser treatment led to the martensite formation and consequently an increase about 12-25% in hardness. Furthermore, in vitro study was carried out using MG-63 osteoblast like cells. The analyses of cell viability for 3 culture times, cell morphology and cell spreading area revealed that sample with the highest average surface roughness parameter is more biocompatible. 10 Hz frequency was found as the optimum parameter which led to the highest surface roughness and thus the biocompatibility enhancement. In conclusion, the pulsed Nd-YAG laser with an optimum value of applied frequency can be utilized as an effective technique to improve the biological characteristics.


Assuntos
Lasers , Teste de Materiais , Osteoblastos/metabolismo , Titânio , Ligas , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Osteoblastos/citologia , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
5.
Sci Rep ; 9(1): 8389, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182784

RESUMO

A lead-free Sn-2.5Ag-0.7Cu base solder with different weight percentages of bismuth (0, 1, 2.5, 5) was used. Thermal properties, microstructure, wettability and mechanical properties were investigated. By decreasing the degree of undercooling, microstructure improved, the eutectic structure become finer and the size of ß-Sn and intermetallic compounds decreased. By the addition of bismuth to SAC257 solder, the spreading ratio increased from 80.46% to 85.97, indicating an improvement in wettability. In order to investigate the joint properties, alloy solders were bonded to copper substrate, and the structure of the interface, tensile-shear strength and the fractured surfaces were studied. It was observed that the thickness of the intermetallic compounds of Cu6Sn5 at the interface decreased with the addition of bismuth, and the lowest thickness of the interfacial IMCs was found in the SAC257-1Bi solder joint, which decreased about 14% compared to the base solder. Also, the Cu/SAC257-1Bi/Cu bond had the highest tensile-shear strength and elongation percentage among the alloy solders, which has a tensile-shear strength of about 30% and an elongation percentage of about 38% higher than the base solder joint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...