Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(14): 144502, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476498

RESUMO

We observed the instability of a few-nanometer-thick water film encapsulated inside a graphene nanoscroll using transmission electron microscopy. The film, that was left after recession of a meniscus, formed ripples along the length of the nanoscroll with a distance only 20%-44% of that predicted by the classical Plateau-Rayleigh instability theory. The results were explained by a theoretical analysis that incorporates the effect of the van der Waals interactions between the water film and the graphene layers. We derived important insights into the behavior of liquid under nanoscale confinement and in nanofluidic systems.

2.
Phys Chem Chem Phys ; 23(43): 24652-24660, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704571

RESUMO

Probing the dynamics of nanobubbles is essential to understand their longevity and behavior. Importantly, such an observation requires tools and techniques having high temporal resolutions to capture the intrinsic characteristics of the nanobubbles. In this work, we have used the in situ liquid-phase electron microscopy (LPEM) technique to gain insights into nanobubbles' behavior and their interfacial dynamics. Interestingly, we could observe a freely growing-shrinking nanobubble and a pinned nanobubble under the same experimental conditions, suggesting the possibility of multiple nanobubble stabilization theories and pathways. Remarkably, the study reveals that a freely growing-shrinking nanobubble induces anisotropic depinning in the three-phase contact line of a strongly pinned neighboring nanobubble. The anisotropic depinning is attributed to the differential local gas saturation levels, depending on the relative positioning of the freely growing-shrinking nanobubble. Furthermore, we also observed a unique pull-push phenomenon exhibited by the nanobubble's interfaces, which is attributed to the van der Waals interactions and the electric double layer collectively. The role of the electric double layer in suppressing and delaying the merging is also highlighted in this study. The present work aims to reveal the role of locally varying gas saturation in the depinning of nanobubbles, their longevity due to the electric double layer, and the consequent coalescence, which is crucial to understand the behavior of the nanobubbles. Our findings will essentially contribute to the understanding of these novel nanoscale gaseous domains and their dynamics.

3.
Langmuir ; 37(2): 874-881, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33400870

RESUMO

Nanobubbles have attracted great interest in recent times because of their application in water treatment, surface cleaning, and targeted drug delivery, yet the challenge remains to gain thorough understanding of their unique behavior and dynamics for their utilization in numerous potential applications. In this work, we have used a liquid-phase electron microscopy technique to gain insights into the quasistatic merging of surface nanobubbles. The electron beam environment was controlled in order to suppress any new nucleation and slow down the merging process. The transmission electron microscopy study reveals that merging of closely positioned surface nanobubbles is initiated by gradual localized changes in the physical properties of the region between the adjoining nanobubble boundary. The observed phenomenon is then analyzed and discussed based on the different perceptions: localized liquid density gradient and bridge formation for gas exchange. In this study, it is estimated that the merging of the stable nanobubbles is initiated by the formation of a thin gas layer. This work not only enhances our understanding of the merging process of stable surface nanobubbles but will also lead to exploration of new domains for nanobubble applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...