Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 307(Pt 2): 135927, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948097

RESUMO

The scarcity of water has been an outgrowing problem, while population is increasing so is the demand for the water. Hence conservation of water is most important and this material might bring in drastic changes in recycling the wastewater into portable ones. The α-Fe2O3/Cu2O is a desirably tailored nanomaterial synthesized using eco-friendly cost-effective hydrothermal method, where α-Fe2O3 and Cu2O were synthesized separately and later combined to produce an effective material. The material are characterized using advanced techniques like XPS, HR-TEM, XRD, FT-IR, BET, UV-DSR, ESR, LC-MS, ICP-AES, and UPS to understand complete morphology and functioning of the material. They are examined for various application in different fields such as dye degradation, heavy metal removal and organic pollutants elimination via photocatalysis under solar irradiation. The α-Fe2O3 and Cu2O had the work function of 6.10 and 5.49 eV respectively and band energy of 1.46 and 2.6 eV. Docking analysis was carried out to know the protein docking efficiency. Biocompatibility of the materials is addressed upon the HeLa cell line and α-Fe2O3/Cu2O exposure causes inflammation in the lung fluids in a mouse model using the Bronchoalveolar lavage (BAL) assay at high concentrations, proving that the materials can help with current and future biological applications.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Animais , Células HeLa , Humanos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Água , Poluentes Químicos da Água/química
2.
Chemosphere ; 294: 133715, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35093415

RESUMO

The synthesis and characterization of Ag2OWO3/Ag/GNS heterostructure with desired modifications has been elucidated in the contemporary study. The fabrication involves a simple hydrothermal method for the configuration of fascinating heterostructures intended to photo-catalytically degrade Eosin Yellow (EY) dye. The toxic dye molecules were converted into non-toxic molecular intermediates, also the elimination of heavy metals from industrial wastewater, being trapped in the pores of heterostructure. The pn junction photocatalyst with plasmonic resonance of Ag for abolition of electron and hole coupling, enhances the photo-response where the catalyst abides S-Scheme mechanism. The work functions of active photocatalysts as calculated for Ag2O is 6.61eV and WO3 is 6.04eV. Furthermore, the Ag2OWO3/Ag/GNS photocatalysts recovery and reuse in several trials without any noticeable loss of photocatalytic activity, complimented the recyclability of the heterostructure. To ensure the safety of the environment on heterostructure being released, toxicity analysis were carried out. These Ag2OWO3/Ag/GNS heterostructures had optimistic result on cytotoxicity assay, and on Musmusculus skin melanoma cells (B16-F10), with anti-microbial/fungal properties. Thereby, the contemporary experiment upholds efficient photocatalysis and ropes multiple errands on biological applications.


Assuntos
Luz , Prata , Catálise , Porosidade , Prata/química , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...