Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 9944, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855640

RESUMO

Euphausia pacifica is a good candidate for a resource of marine n-3 PUFA. However, few reports exist of the lipid and fatty acid composition of E. pacifica. To examine the potential of E. pacifica as a resource of marine n-3 PUFA, we analyzed E. pacifica oil. We extracted lipids from E. pacifica harvested from the Pacific Ocean near Sanriku, Japan. Lipid classes of E. pacifica oil were analyzed by TLC-FID and the fatty acid composition of the oil was analyzed by GC/MS. Free fatty acids and hydroxy-fatty acids were analyzed by LC/QTOFMS. The lipid content of E. pacifica ranged from 1.30% to 3.57%. The ratios of triacylglycerols, phosphatidylcholine, phosphatidylethanolamine and free fatty acids in E. pacifica lipids were 5.3-23.0%, 32.6-53.4%, 8.5-25.4% and 2.5-7.0%, respectively. The content of n-3 PUFA in E. pacifica lipids was 38.6-46.5%. We also showed that E. pacifica contains unusual fatty acids and derivatives: C16-PUFAs (9,12-hexadecadienoic acid, 6,9,12-hexadecatrienoic acid and 6,9,12,15-hexadecatetraenoic acid) and hydroxy-PUFAs (8-HETE and 10-HDoHE). E. pacifica is a good resource of marine n-3 PUFA. Moreover, E. pacifica can provide C16-PUFA and hydroxy-PUFAs.


Assuntos
Euphausiacea/química , Lipídeos/análise , Animais , Cromatografia Líquida , Cromatografia em Camada Fina , Ionização de Chama , Japão , Lipídeos/isolamento & purificação , Espectrometria de Massas , Oceano Pacífico
2.
Nutrients ; 9(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892009

RESUMO

5-hydroxyeicosatetraenoic acid (5-HETE) and 5-hydroxyeicosapentaenoic acid (5-HEPE) are major metabolites produced by 5-lipoxygenase (5-LOX) from arachidonic acid (AA) and eicosapentaenoic acid (EPA). Effects of hydroxides on endothelial cells are unclear, although 5-LOX is known to increase at arteriosclerotic lesions. To investigate the effects of hydroxides on human umbilical vein endothelial cells (HUVECs), the cells were treated with 50 µM each of AA, EPA, 5-HETE, and 5-HEPE. Treatment of HUVECs with 5-HETE and 5-HEPE, rather than with AA and EPA, increased the nuclear translocation of NF-E2 related factor 2 (Nrf2) and upregulated the expression of heme oxygenase-1 and cystine/glutamate transporter regulated by Nrf2. Reactive oxygen species (ROS) generation was markedly elevated in HUVECs after treatment with 5-HETE and 5-HEPE, and the pretreatment with α-tocopherol abrogated ROS levels similar to those in the vehicle control. However, ROS generation was independent of Nrf2 activation induced by 5-HETE and 5-HEPE. 5-HETE was converted to 5-oxo-eicosatetraenoic acid (5-oxo-ETE) in HUVECs, and 5-oxo-ETE increased Nrf2 activation. These results suggest that 5-HETE works as an Nrf2 activator through the metabolite 5-oxo-ETE in HUVECs. Similarly, 5-HEPE works in the same way, because 5-HEPE is metabolized to 5-oxo-eicosapentaenoic acid through the same pathway as that for 5-HETE.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Araquidônico/metabolismo , Células Cultivadas , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologia
3.
J Lipids ; 2016: 7498508, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27239345

RESUMO

PPARs regulate the expression of genes involved in lipid homeostasis. PPARs serve as molecular sensors of fatty acids, and their activation can act against obesity and metabolic syndromes. 8-Hydroxyeicosapentaenoic acid (8-HEPE) acts as a PPAR ligand and has higher activity than EPA. However, to date, the PPAR ligand activity of 8-HEPE has only been demonstrated in vitro. Here, we investigated its ligand activity in vivo by examining the effect of 8-HEPE treatment on high fat diet-induced obesity in mice. After the 4-week treatment period, the levels of plasma and hepatic triglycerides in the 8-HEPE-fed mice were significantly lower than those in the HFD-fed mice. The expression of genes regulated by PPARα was significantly increased in 8-HEPE-fed mice compared to those that received only HFD. Additionally, the level of hepatic palmitic acid in 8-HEPE-fed mice was significantly lower than in HFD-fed mice. These results suggested that intake of 8-HEPE induced PPARα activation and increased catabolism of lipids in the liver. We found no significant differences between EPA-fed mice and HFD-fed mice. We demonstrated that 8-HEPE has a larger positive effect on metabolic syndrome than EPA and that 8-HEPE acts by inducing PPARα activation in the liver.

4.
J Agric Food Chem ; 61(27): 6629-35, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23730977

RESUMO

Many dietary polyphenols can provide health benefits, such as antioxidant and antidiabetic effects, and can down-regulate the progression of glycation (one cause of diabetic complications). Chinese quince (CQ) is rich in polyphenols, especially procyanidins. A few studies have indicated that CQ has an effect on diabetes. In this study, a procyanidin-rich extract was prepared from Chinese quince fruit (CQE), and its effects were investigated and compared with those of green tea extract (GTE) in type 2 diabetes model KK-A(y) mice. Mice were provided one of two high-fat (HF) diets for 4 weeks: a HF diet containing 0.5% CQE or a HF diet containing 0.5% GTE. Blood glucose was suppressed in mice fed CQE and GTE during the experimental period (p < 0.05), although the effect of CQE was weaker than that of GTE. Intake of CQE had no effect on the blood insulin level, whereas GTE decreased the insulin level. Body weight gain was suppressed in mice fed CQE similarly to mice fed GTE (p < 0.05). Hepatic lipid content and α-dicarbonyl compounds in the kidney were reduced in mice fed CQE and GTE (p < 0.05). These results suggest that intake of CQE could moderate type 2 diabetes and diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Rosaceae/química , Animais , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Frutas/química , Humanos , Insulina/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...