Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 18(17): 3369-3375, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35416238

RESUMO

The specific deformation behavior of crystalline polymer films, namely unoriented crystallized isotactic polypropylene (it PP) films, was investigated under a multiaxial stress field. Changes in the aggregation structure of the films were investigated during the bulge deformation process using in situ small-angle X-ray scattering, wide-angle X-ray diffraction (WAXD) measurements, and polarized high-speed-camera observations. The films had a thickness of approximately 10 µm. The it PP films were fixed at the hole of a plate, then bulge deformation was applied using N2 or He gas pressure, and stress-strain curves were then calculated from the applied pressure and bulge height. Yielding was observed in the stress-strain curves. Below the yield point, in situ WAXD measurements revealed that the crystal lattice expanded isotropically at the center, edge, and bottom of the bulge hole. Above the yield point, a craze started to form slightly near the center, and crazes formed in various directions with a further increase in strain, while the crystal lattice expanded uniaxially along the circumference at the edge and bottom. Crazes oriented in various directions merged and lost birefringence, indicating a change to the isotropic orientation. The different directions of the crazes indicated several directions of stress. In other words, even if multiaxial deformation is applied to a crystalline it PP film, the string-shaped crystalline polymer chain structure produces local anisotropic uniaxial stress.

2.
ACS Macro Lett ; 8(2): 218-222, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619433

RESUMO

The local mechanical properties of crystalline polymer were evaluated using synchrotron radiation X-ray diffraction with 10 µm lateral resolution. A nonoriented isotactic polypropylene (iPP) film with isolated spherulites in a crystallized matrix was used as a model sample. In situ wide-angle X-ray diffraction (WAXD) measurement was performed on the iPP film using a microbeam synchrotron radiation X-ray under sinusoidal strain. The lattice spacing of the crystal planes increased and decreased in response to the applied sinusoidal strain. Local dynamic viscoelastic functions (dynamic storage and loss moduli (E' and E″)) were calculated at room temperature from the relationship between the calculated applied stress and the response strain obtained by dynamic µ-beam WAXD measurement inside and outside of the spherulites. The E' values inside and outside of spherulite obtained from the change in spacing of the (110) plane were 1.8 and 1.1 GPa, respectively. Furthermore, the E' value inside of spherulite obtained from the change in spacing of the (1̅13) plane was 6.0 GPa. These values can be explained by the deformation of crystallite, which depends on the direction of crystal planes. The results obtained here revealed that synchrotron radiation X-ray diffraction measurement gives not only structural information but also the local mechanical properties of the materials E'.

3.
Soft Matter ; 14(9): 1659-1664, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411844

RESUMO

It is desirable to establish a method for evaluating mechanical properties, such as modulus and strength, of micrometer and sub-micrometer thick polymer films. Bulge tests, where bulge deformation is imposed on films by the pressure of an inert gas, are suitable for satisfying this demand. However, very few studies on polymer films exist in the literature. In this study, bulge testing equipment for in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) measurements is designed and used to study the relationship between the molecular aggregation structure and the mechanical properties of a crystalline nylon 12 (Ny12) film during bulge testing. Isothermally crystallized and quenched Ny12 films exhibited stress-strain curves similar to those obtained by conventional uniaxial elongation. In situ WAXD measurements during bulge testing revealed that the lattice extension of the crystallites is clearly dependent on crystallinity. Concretely, crystallites in the isothermally crystallized film show higher elastic properties than those in the quenched one. The results of the molecular aggregation structure, including the crystal structure and the amorphous chain surrounding the crystallites, of the films during bulge deformation firstly obtained in this study must be useful for designing toughened polymer films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...