Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396828

RESUMO

The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.


Assuntos
Doenças Musculares , Retículo Sarcoplasmático , Camundongos , Masculino , Animais , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Envelhecimento/metabolismo , Doenças Musculares/metabolismo
2.
Sci Rep ; 13(1): 17801, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853169

RESUMO

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) has recently been attributed to biallelic repeat expansions in RFC1. More recently, the disease entity has expanded to atypical phenotypes, including chronic neuropathy without cerebellar ataxia or vestibular areflexia. Very recently, RFC1 expansions were found in patients with Sjögren syndrome who had neuropathy that did not respond to immunotherapy. In this study RFC1 was examined in 240 patients with acute or chronic neuropathies, including 105 with Guillain-Barré syndrome or Miller Fisher syndrome, 76 with chronic inflammatory demyelinating polyneuropathy, and 59 with other types of chronic neuropathy. Biallelic RFC1 mutations were found in three patients with immune-mediated neuropathies, including Guillain-Barré syndrome, idiopathic sensory ataxic neuropathy, or anti-myelin-associated glycoprotein (MAG) neuropathy, who responded to immunotherapies. In addition, a patient with chronic sensory autonomic neuropathy had biallelic mutations, and subclinical changes in Schwann cells on nerve biopsy. In summary, we found CANVAS-related RFC1 mutations in patients with treatable immune-mediated neuropathy or demyelinating neuropathy.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Síndrome de Guillain-Barré , Doenças do Sistema Nervoso Periférico , Doenças Vestibulares , Humanos , Ataxia Cerebelar/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética
3.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298161

RESUMO

Obesity and aging are known to affect the skeletal muscles. Obesity in old age may result in a poor basement membrane (BM) construction response, which serves to protect the skeletal muscle, thus making the skeletal muscle more vulnerable. In this study, older and young male C57BL/6J mice were divided into two groups, each fed a high-fat or regular diet for eight weeks. A high-fat diet decreased the relative gastrocnemius muscle weight in both age groups, and obesity and aging individually result in a decline in muscle function. Immunoreactivity of collagen IV, the main component of BM, BM width, and BM-synthetic factor expression in young mice on a high-fat diet were higher than that in young mice on a regular diet, whereas such changes were minimal in obese older mice. Furthermore, the number of central nuclei fibers in obese older mice was higher than in old mice fed a regular diet and young mice fed a high-fat diet. These results suggest that obesity at a young age promotes skeletal muscle BM formation in response to weight gain. In contrast, this response is less pronounced in old age, suggesting that obesity in old age may lead to muscle fragility.


Assuntos
Músculo Esquelético , Obesidade , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Membrana Basal/metabolismo
4.
Med Mol Morphol ; 56(1): 11-19, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36107241

RESUMO

The basement membrane (BM), mainly composed of collagen IV, plays an important role in the maintenance, protection, and recovery of muscle fibers. Collagen IV expression is maintained by the balance between synthetic and degradative factors, which changes depending on the level of muscle activity. For example, exercise increases collagen IV synthesis, whereas inactivity decreases collagen IV synthesis. However, the effects of stretching on the BM structure remain unclear. Therefore, to investigate the effects of stretching on the BM of the skeletal muscle, we continuously applied stretching to the rat soleus muscle and examined the altered expression of BM-related factors and structure using quantitative polymerase chain reaction (qPCR), western blotting, zymography, immunohistochemistry, and electron microscopy. The results show that stretching increased the matrix metalloproteinase 14 (MMP14) expression and MMP2 activity, and decreased the collagen IV expression and width of the lamina densa in the soleus muscle. These results suggest that stretching promotes BM degradation in the rat soleus muscle. The findings of this study indicate a new influence of stretching on skeletal muscles, and may contribute to the new use of stretching in rehabilitation and sports fields.


Assuntos
Metaloproteinase 2 da Matriz , Músculo Esquelético , Ratos , Animais , Ratos Wistar , Metaloproteinase 2 da Matriz/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Membrana Basal/metabolismo , Colágeno Tipo IV
5.
Brain Res ; 1798: 148129, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332665

RESUMO

The localization and function of synaptotagmin (syt)17 in the suprachiasmatic nucleus (SCN) of the brain, which is the master circadian oscillator, were investigated. The Syt17 mRNA-containing neurons were mainly situated in the shell region while SYT17 immunoreactive cell bodies and neural fibers were detected in the core and shell of the SCN and the subparaventricular zone (SPZ). Further, electron microscopy analysis revealed SYT17 in the rough endoplasmic reticulum (rER), Golgi apparatus (G), and large and small vesicles of neurons. Syt17 mRNA expression in the SCN showed a circadian rhythm, and light exposure at night suppressed its expression. In addition, the free running period of locomotor activity rhythm was shortened in Syt17-deletion mutant mice. These findings suggest that SYT17 is involved in the regulation of circadian rhythms.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Sinaptotagminas , Animais , Camundongos , Ritmo Circadiano/fisiologia , Mamíferos/genética , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Núcleo Supraquiasmático/metabolismo , Sinaptotagminas/metabolismo
6.
PLoS One ; 17(10): e0276372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36256675

RESUMO

In mammals, the center of the circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Many studies have suggested that there are multiple regions generating different circadian periods within the SCN, but the exact localization of the regions has not been elucidated. In this study, using a transgenic rat carrying a destabilized luciferase reporter gene driven by a regulatory element of Per2 gene (Per2::dLuc), we investigated the regional variation of period lengths in horizontal slices of the SCN. We revealed a distinct caudal medial region (short period region, SPR) and a rostro-lateral region (long period region, LPR) that generate circadian rhythms with periods shorter than and longer than 24 hours, respectively. We also found that the core region of the SCN marked by dense VIP (vasoactive intestinal peptide) mRNA-expressing neurons covered a part of LPR, and that the shell region of the SCN contains both SPR and the rest of the LPR. Furthermore, we observed how synchronization is achieved between regions generating distinct circadian periods in the SCN. We found that the longer circadian rhythm of the rostral region appears to entrain the circadian rhythm in the caudal region. Our findings clarify the localization of regionality of circadian periods and the mechanism by which the integrated circadian rhythm is formed in the SCN.


Assuntos
Proteínas Circadianas Period , Peptídeo Intestinal Vasoativo , Ratos , Animais , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiologia , Luciferases/metabolismo , Ratos Transgênicos , RNA Mensageiro , Mamíferos/genética
7.
Microscopy (Oxf) ; 71(4): 245-248, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349694

RESUMO

We investigated the effect of aging on the basement membrane (BM) during postinjury muscle recovery. Using a rat model, we found that aging delayed muscle fiber and BM recovery. In addition, expression of BM-related factors peaked 7 days after muscle injury among both young and older rats. Peak expression of collagen IV synthetic factors decreased with age, whereas expression of the degradative factor was unaffected by age. These results suggest that age-related delays in postinjury muscle fiber and BM recovery may be related to the suppression of collagen IV synthetic factors.


Assuntos
Envelhecimento , Músculo Esquelético , Animais , Membrana Basal/metabolismo , Colágeno/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo , Ratos
8.
Acta Histochem Cytochem ; 54(5): 167-175, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34764525

RESUMO

The basement membrane (BM)-related factors, including collagen IV, are important for the maintenance and recovery of skeletal muscles. Aging impairs the expression of BM-related factors during recovery after disuse atrophy. Muscle activity facilitates collagen synthesis that constitutes the BM. However, the effect of endurance exercise on the BM of aged muscles is unclear. Thus, to understand the effect of endurance exercise on the BM of the skeletal muscle in aged rats, we prescribed treadmill running in aged rats and compared the differences in the expression of BM-related factors between the aged rats with and without exercise habits. Aged rats were subjected to endurance exercise via treadmill running. Exercise increased the mRNA expression levels of the BM-related factors, the area and intensity of collagen IV-immunoreactivity and the width of lamina densa in the soleus muscle of aged rats. These finding suggests that endurance exercise promotes BM construction in aged rats.

9.
Biomed Res ; 42(3): 115-119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092753

RESUMO

The basement membrane (BM), with collagen IV as a major component, plays an important role in the maintenance of muscle structure and its robustness. To investigate the effects of aging on factors related to BM construction, we compared the expression status of these factors in 3- and 20-month-old male Wistar rats. The expression levels of Col4a1 and Col4a2 (encoding collagen IV), Sparc (involved in collagen IV functionalization), and Mmp14 (a collagen IV degradation factor) were decreased. These results suggest that aging suppresses collagen IV synthetic and degradative factors and affects BM-related factors in the steady state.


Assuntos
Membrana Basal/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Envelhecimento , Animais , Peso Corporal , Medula Óssea/metabolismo , Colágeno Tipo IV/biossíntese , Expressão Gênica , Masculino , Ratos , Ratos Wistar , Regeneração , Fatores de Tempo
10.
Eur J Neurosci ; 53(6): 1783-1793, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33351992

RESUMO

The circadian rhythms are endogenous rhythms of about 24 h, and are driven by the circadian clock. The clock centre locates in the suprachiasmatic nucleus. Light signals from the retina shift the circadian rhythm in the suprachiasmatic nucleus, but there is a robust part of the suprachiasmatic nucleus that causes jet lag after an abrupt shift of the environmental lighting condition. To examine the effect of attenuated circadian rhythm on the duration of jet lag, we established a transgenic rat expressing BMAL1 dominant negative form under control by mouse Prnp-based transcriptional regulation cassette [BMAL1 DN (+)]. The transgenic rats became active earlier than controls, just after light offset. Compared to control rats, BMAL1 DN (+) rats showed smaller circadian rhythm amplitudes in both behavioural and Per2 promoter driven luciferase activity rhythms. A light pulse during the night resulted in a larger phase shift of behavioural rhythm. Furthermore, at an abrupt shift of the light-dark cycle, BMAL1 DN (+) rat showed faster entrainment to the new light-dark cycle compared to controls. The circadian rhythm has been regarded as a limit cycle phenomenon, and our results support the hypothesis that modification of the amplitude of the circadian limit cycle leads to alteration in the length of the phase shift.


Assuntos
Relógios Circadianos , Síndrome do Jet Lag , Fatores de Transcrição ARNTL , Animais , Ritmo Circadiano , Camundongos , Ratos , Ratos Transgênicos , Núcleo Supraquiasmático
11.
Connect Tissue Res ; 62(5): 519-530, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619127

RESUMO

Purpose: Collagen IV is a component of the basement membrane (BM) that provides mechanical support for muscle fibers. In addition, transcription factor 4 (TCF4) is highly expressed in muscle connective tissue fibroblasts and regulates muscle regeneration. However, the expression of collagen IV and TCF4 (+) cells in response to exercise-induced muscle injury is not well known. Here, we investigated the expression and localization of collagen IV and TCF4 (+) cells during the recovery process after muscle injury induced by different exercise loads.Materials and Methods: Muscle injury was observed in the soleus muscle of young Wistar rats after 12 or 18 sets-downhill running (DR) on a treadmill. After running, the rats were permitted to recover for a period of 0.5 days, 2 days, or 7 days.Results: Ectopic localization of collagen IV in injured muscle fibers was observed after DR, and the number increased at 0.5 days after 18 sets DR and at 2 days after 12 or 18 sets DR as compared to the number observed at baseline. BM disruption was observed after DR. TCF4 (+) cells appeared in the inside and around injured muscle fibers at 0.5 day of recovery. After 18 sets DR, TCF4 (+) cells were more abundant for a longer period than that observed after 12 sets DR.Conclusions: DR induces BM disruption accompanied by muscle fiber damage. It is possible that BM destruction may be accompanied by muscle damage and that TCF4 (+) cells contribute to muscle fiber and BM recovery.


Assuntos
Membrana Basal , Músculo Esquelético , Animais , Colágeno , Fibras Musculares Esqueléticas , Ratos , Ratos Wistar
12.
Sci Rep ; 10(1): 18883, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144677

RESUMO

Deleted in lung and esophageal cancer 1 (DLEC1) is a tumour suppressor gene that is downregulated in various cancers in humans; however, the physiological and molecular functions of DLEC1 are still unclear. This study investigated the critical role of Dlec1 in spermatogenesis and male fertility in mice. Dlec1 was significantly expressed in testes, with dominant expression in germ cells. We disrupted Dlec1 in mice and analysed its function in spermatogenesis and male fertility. Dlec1 deletion caused male infertility due to impaired spermatogenesis. Spermatogenesis progressed normally to step 8 spermatids in Dlec1-/- mice, but in elongating spermatids, we observed head deformation, a shortened tail, and abnormal manchette organization. These phenotypes were similar to those of various intraflagellar transport (IFT)-associated gene-deficient sperm. In addition, DLEC1 interacted with tailless complex polypeptide 1 ring complex (TRiC) and Bardet-Biedl Syndrome (BBS) protein complex subunits, as well as α- and ß-tubulin. DLEC1 expression also enhanced primary cilia formation and cilia length in A549 lung adenocarcinoma cells. These findings suggest that DLEC1 is a possible regulator of IFT and plays an essential role in sperm head and tail formation in mice.


Assuntos
Infertilidade Masculina/genética , Espermatozoides/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Células A549 , Animais , Sistemas CRISPR-Cas , Deleção de Genes , Células HEK293 , Humanos , Infertilidade Masculina/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Espermatogênese , Tubulina (Proteína)/metabolismo
13.
Biochem Biophys Res Commun ; 531(4): 515-521, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32807491

RESUMO

Light is an important cue for resetting the circadian clock. In mammals, light signals are thought to be transmitted to the cAMP response element (CRE) via a binding protein (CREB) to induce the expression of Per1 and Per2 genes in the mammalian circadian pacemaker, the suprachiasmatic nuclei (SCN). Several in vitro studies have suggested candidate CRE sites that contribute to the Per1 and Per2 induction by light, resulting in a phase shift of the circadian rhythm. However, it remains unclear whether the CREs are responsible for the light-induced Per1/2 induction. To address this question, we generated CRE-deleted mice in the Per1 and Per2 promoter regions. Deletion of a cAMP-responsive CRE in the Per1 promoter blunted light-induced Per1 expression in the SCN at night, while deletion of an ATF4 (CREB-2)-associated CRE in the Per2 promoter had no effect on its expression. These results suggested that the CRE in the Per1 promoter works for light induction but not CRE in the Per2 promoter. Behavioral rhythms observed under some light conditions were not affected by the CRE-deletion in Per1 promoter, suggesting that the attenuated Per1 induction did not affect the entrainment in some light conditions.


Assuntos
AMP Cíclico/genética , Proteínas Circadianas Period/genética , Elementos de Resposta/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Sistemas CRISPR-Cas , Feminino , Regulação da Expressão Gênica , Luz , Locomoção/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Regiões Promotoras Genéticas
14.
Neurosci Lett ; 727: 134897, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32156614

RESUMO

Entrainment of mammalian circadian rhythms requires receptor-mediated signaling in the hypothalamic suprachiasmatic nucleus (SCN), the site of the master circadian pacemaker. Receptor-mediated signaling is regulated by endocytosis, indicating that endocytosis-related proteins contribute to SCN pacemaking. Sorting nexin 25 (SNX25) belongs to the sorting nexin superfamily, whose members are responsible for membrane attachment to organelles of the endocytic system. In this study, we showed that Snx25 mRNA and SNX25 protein are highly expressed and exhibit remarkable circadian rhythms in the SCN of adult mice. Expression was maximal at about zeitgeber time (ZT) 16 in the subjective night and minimal at ZT8 in the subjective day. Prominent SNX25 immunoreactivity was found in the arginine vasopressin-positive neurons of the SCN. These findings suggest that SNX25 is a new actor in endocytic signaling, perhaps contributing to the circadian pacemaking system.


Assuntos
Ritmo Circadiano/fisiologia , Endocitose/fisiologia , Nexinas de Classificação/biossíntese , Núcleo Supraquiasmático/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Sci Rep ; 9(1): 13634, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541165

RESUMO

ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 (ST8SIA2) synthesizes polysialic acid (PSA), which is essential for brain development. Although previous studies reported that St8sia2-deficient mice that have a mixed 129 and C57BL/6 (B6) genetic background showed mild and variable phenotypes, the reasons for this remain unknown. We hypothesized that this phenotypic difference is caused by diversity in the expression or function of flanking genes of St8sia2. A genomic polymorphism and gene expression analysis in the flanking region revealed reduced expression of insulin-like growth factor 1 receptor (Igf1r) on the B6 background than on that of the 129 strain. This observation, along with the finding that administration of an IGF1R agonist during pregnancy increased litter size, suggests that the decreased expression of Igf1r associated with ST8SIA2 deficiency caused lethality. This study demonstrates the importance of gene expression level in the flanking regions of a targeted null allele having an effect on phenotype.


Assuntos
Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Receptor IGF Tipo 1/genética , Sialiltransferases/deficiência , Animais , Feminino , Regulação da Expressão Gênica , Genes Letais , Fator de Crescimento Insulin-Like I/administração & dosagem , Fator de Crescimento Insulin-Like I/análogos & derivados , Fator de Crescimento Insulin-Like I/farmacologia , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Mutação com Perda de Função , Masculino , Camundongos , Fenótipo , Polimorfismo de Nucleotídeo Único , Gravidez , Receptor IGF Tipo 1/agonistas
16.
Brain Res ; 1714: 73-80, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771316

RESUMO

The suprachiasmatic nucleus (SCN) is the center of the mammalian circadian system. Environmental photic signals shifts the phase of the circadian rhythm in the SCN except during the dead zone, when the photic signal is gated somewhere on the way from the retina to the neurons in the SCN. Here we examined the phase of the dead zone after an abrupt delay of the LD cycles for several days by observing the mc-Fos induction in the SCN by light pulses. After an abrupt shift of the LD cycles, the dead zone showed a slow phase shift, about two hours per day, which was well corresponded with the slow phase shift of the rest-activity cycles. In our previous study we demonstrated that, after an abrupt shift of the LD cycles, the SCN showed transient endogenous desynchronization between shell and core regions that showed a slow and a rapid shift of the circadian rhythms, respectively. Therefore, the present findings on the phase shift of the dead zone after the LD cycles shift suggest that the phase of the dead zone is under the control of the timing signals from the shell region of the SCN.


Assuntos
Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Animais , Relógios Biológicos/fisiologia , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period/metabolismo , Estimulação Luminosa/métodos , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/análise , Retina/metabolismo , Núcleo Supraquiasmático/fisiologia
17.
Cell Rep ; 24(9): 2231-2247.e7, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30157420

RESUMO

Sleep regulation involves interdependent signaling among specialized neurons in distributed brain regions. Although acetylcholine promotes wakefulness and rapid eye movement (REM) sleep, it is unclear whether the cholinergic pathway is essential (i.e., absolutely required) for REM sleep because of redundancy from neural circuits to molecules. First, we demonstrate that synaptic inhibition of TrkA+ cholinergic neurons causes a severe short-sleep phenotype and that sleep reduction is mostly attributable to a shortened sleep duration in the dark phase. Subsequent comprehensive knockout of acetylcholine receptor genes by the triple-target CRISPR method reveals that a similar short-sleep phenotype appears in the knockout of two Gq-type acetylcholine receptors Chrm1 and Chrm3. Strikingly, Chrm1 and Chrm3 double knockout chronically diminishes REM sleep to an almost undetectable level. These results suggest that muscarinic acetylcholine receptors, Chrm1 and Chrm3, are essential for REM sleep.


Assuntos
Acetilcolina/metabolismo , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M3/metabolismo , Sono REM/genética , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Sci Rep ; 8(1): 854, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339832

RESUMO

In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.


Assuntos
Proteínas CLOCK/metabolismo , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Animais , Comportamento Animal , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , AMP Cíclico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Modelos Teóricos , Mutagênese , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Transdução de Sinais/efeitos dos fármacos , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Tetrodotoxina/farmacologia
19.
Exp Gerontol ; 98: 153-161, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28803135

RESUMO

Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.


Assuntos
Envelhecimento/metabolismo , Membrana Basal/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Membrana Basal/ultraestrutura , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Elevação dos Membros Posteriores , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Força Muscular , Músculo Esquelético/fisiopatologia , Músculo Esquelético/ultraestrutura , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Necrose , Osteonectina/genética , Osteonectina/metabolismo , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
20.
Acta Histochem Cytochem ; 50(2): 95-104, 2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28522884

RESUMO

Both prokineticin receptor 2 (pkr2) and prokineticin 2 (pk2) gene-deficient mice have hypoplasia of the main olfactory bulb (MOB). This hypoplasia has been attributed to disruption of the glomerulus that is caused by loss of afferent projection from olfactory sensory neurons (OSN), and to the impaired migration of granule cells, a type of interneuron. In the present study, we examined whether migration of the second type of interneuron, periglomerular cells (PGC), is dependent on the pkr2 expression by observing the localization of distinct subpopulations of PGC: calretinin (CR)-, calbindin (CB)- and tyrosine hydroxylase (TH)-expressing neurons. In the Pkr2-/- mice, the construction of the layered structure of the MOB was partially preserved, with the exception of the internal plexiform layer (IPL) and the glomerular layer (GL). In the outermost layer of the MOB, abundant CR- and CB-immunopositive neurons were observed in the hypoplastic olfactory bulb. In addition, although markedly decreased, TH-immunopositive neurons were also observed in the outermost cell-dense region in the Pkr2-/-. The findings suggest that the migration of PGC to the MOB, as well as the migration from the core to the surface region of the MOB, is not driven by the PK2-PKR2 system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...