Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 468(1-2): 269-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505792

RESUMO

In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial-mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell-cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns.


Assuntos
Adenosina/análogos & derivados , Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Adenosina/farmacologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Histonas/análise , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas do Grupo Polycomb/análise
2.
BMC Cancer ; 14: 988, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25527207

RESUMO

BACKGROUND: Epigenetic modifications play important roles in the regulation of gene expression determining cellular phenotype as well as various pathologies such as cancer. Although the loss of keratin 13 (KRT13) is reportedly linked to malignant transformation of oral epithelial cells, the molecular mechanisms through which KRT13 is repressed in oral squamous cell carcinoma (OSCC) remain unclear. The aim of this study is to identify the epigenetic alterations of the KRT13 gene in OSCCs. METHODS: We investigated KRT13 expression levels and chromatin modifications of the KRT13 promoter in the three OSCC cell lines (HSC4, HSC3, and SAS). The expression levels of KRT13 protein and mRNA were analyzed by western blotting and quantitative reverse-transcription polymerase chain reaction, respectively, and the localization of KRT13 protein was detected by immunofluorescence. DNA methylation and histone modifications in the KRT13 promoter were determined by bisulfite sequencing and chromatin immunoprecipitation (ChIP), respectively. For the pharmacological depletion of Polycomb repressive complex 2 (PRC2), cells were treated with 3-deazaneplanocin A (DZNep). RESULTS: KRT13 expression was transcriptionally silenced in the HSC3 and SAS cells and post-transcriptionally repressed in the HSC4 cells, while the KRT13 promoter was hypermethylated in all of the three OSCC cell lines. ChIP analysis revealed that PRC2-mediated trimethylation of Lys 27 on histone H3 (H3K27me3) was increased in the KRT13 promoter in the HSC3 and SAS cells. Finally, we demonstrated that the treatment of SAS cells with DZNep reactivated the transcription of KRT13 gene. CONCLUSIONS: Our data provide mechanistic insights into the epigenetic silencing of KRT13 genes in OSCC cells and might be useful for the development of diagnostic markers and novel therapeutic approaches against OSCCs.


Assuntos
Carcinoma de Células Escamosas/genética , Epigênese Genética , Queratina-13/genética , Neoplasias Bucais/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Queratina-13/metabolismo , Metilação , Neoplasias Bucais/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...