RESUMO
Dosimetric measurements on the Space Shuttle Missions STS-84, -89 and -91 have been made by the real-time radiation monitoring device III (RRMD-III). Simultaneously, another dosimetry measurement was made by the Dosimetry Telescope (DOSTEL) on STS-84 and by the tissue-equivalent proportional counter (TEPC) on STS-91. First, the RRMD-III instrument is described in detail and its results summarized. Then, the results of DOSTEL and TEPC are compared with those of the RRMD-III. Also, the absorbed doses obtained by TLD (Mg2SiO4) and by RRMD-III on board STS-84 and -91 are compared.
Assuntos
Radiação Cósmica , Transferência Linear de Energia , Prótons , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Voo Espacial/instrumentação , Oceano Atlântico , Doses de Radiação , Eficiência Biológica Relativa , Silício , Atividade Solar , América do Sul , Astronave/instrumentação , Fatores de TempoRESUMO
The measurement of the directional distribution of incident particles was made by using the Real time Radiation Monitoring Device (RRMD)-III placed inside the Space Shuttle STS-84 cruised at an altitude of 400 km and an inclination angle of 51.6 degrees, which are the same as the cruising orbit of the International Space Station (ISS). The directional distributions of incident particles were evaluated over the observed linear energy transfer (LET) range (1-100 keV/micrometers). The pitch angle distribution is also obtained using the geomagnetic model of IGRF-95. The result is roughly in good agreement with the distribution obtained by the VF1-MIN anisotropy model calculation within the present experimental errors, if the shielding distribution is assumed to be uniform.
Assuntos
Radiação Cósmica , Partículas Elementares , Modelos Teóricos , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Anisotropia , Oceano Atlântico , Transferência Linear de Energia , Proteção Radiológica , Atividade Solar , América do Sul , Ausência de PesoRESUMO
Space radiation dosimetry measurements have been made onboard the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2: 28.5 degrees x 300 km: 14.68 days) and the STS-79 in the 4th Shuttle MIR mission (S/MM#4: 51.6 degrees x 300-400km: 10.2 days). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD-I for IML-2 and RRMD-II with improved triggering system for S/MM#4)" utilizing silicon semi-conductor detectors and the other detectors are conventional passive detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. The main contribution to dose equivalent for particles with LET > 5.0 keV/micrometer (IML-2) and LET > 3.5 keV/micrometer (S/MM#4) is seen to be due to galactic cosmic rays (GCRs) and the contribution of the South Atlantic Anomaly (SAA) is less than 5% (IML-2: 28.5 degrees x 300 km) and 15% (S/MM#4: 51.6 degrees x 400 km) in the above RRMD LET detection conditions. For the whole LET range (> 0.2 kev/micrometer) obtained by TLDs and CR-39 in these two typical orbits (a small inclination x low altitude and a large inclination x high altitude), absorbed dose rates range from 94 to 114 microGy/day, dose equivalent rates from 186 to 207 microSv/day and average quality factors from 1.82 to 2.00 depending on the locations and directions of detectors inside the Spacelab at the highly protected IML-2 orbit (28.5 degrees x 300 km), and also, absorbed dose rates range from 290 to 367 microGy/day, dose equivalent rates from 582 to 651 microSv/day and average quality factors from 1.78 to 2.01 depending on the dosimeter packages around the RRMD-II "Detector Unit" at the S/MM#4 orbit (5l.6 degrees x 400km). In general, it is seen that absorbed doses depend on the orbit altitude (SAA trapped particles contribution dominant) and dose equivalents on the orbit inclination (GCR contribution dominant). The LET distributions obtained by two different types of active and passive detectors, RRMDs and CR-39, are in good agreement for LET of 15 - 200 kev/micrometer and difference of these distributions in the regions of LET < 15 kev/micrometer and LET > 200 kev/micrometer can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks and chemical etching conditions.
Assuntos
Radiação Cósmica , Transferência Linear de Energia , Prótons , Monitoramento de Radiação/instrumentação , Atividade Solar , Voo Espacial/instrumentação , Oceano Atlântico , Polietilenoglicóis , Doses de Radiação , Radiometria , América do Sul , Dosimetria TermoluminescenteRESUMO
The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.
Assuntos
Radiação Cósmica , Prótons , Monitoramento de Radiação/instrumentação , Voo Espacial/instrumentação , Astronave/instrumentação , Medicina Aeroespacial , Altitude , Oceano Atlântico , Calibragem , Transferência Linear de Energia , Doses de Radiação , Atividade Solar , América do Sul , TelemetriaRESUMO
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.