Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Soft Matter ; 20(26): 5221-5236, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904181

RESUMO

Mixing and segregation of granular particles on the basis of size and density from vertical vibration or upward gas flow is critical to a wide range of industrial, agricultural and natural processes. Recently, combined vibration and gas flow under certain conditions has been shown to create periodically repeating structured bubbling patterns within a fluidized bed of spherical, monodisperse particles. Here, we demonstrate with experiments and simulations that structured bubbling can form in binary mixtures of particles with different size and density, but with similar minimum fluidization velocities. Structured bubbling leads to particles mixing regardless of initial particle configuration, while exciting particles with only gas flow produces smaller unstructured bubbles which act to segregate particles. Discrete particle simulations match the experimental results qualitatively and, in some regards quantitatively, while continuum particle simulations do not predict mixing in the case of structured bubbling, highlighting areas for future model improvement.

2.
ChemistryOpen ; 12(1): e202200196, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599689

RESUMO

A hydrometallurgical process is developed to lower the costs of copper production and thereby sustain the use of copper throughout the global transition to renewable energy technologies. The unique feature of the hydrometallurgical process is the reductive treatment of chalcopyrite, which is in contrast to the oxidative treatment more commonly pursued in the literature. Chalcopyrite reduction by chromium(II) ion is described for the first time and superior kinetics are shown. At high concentrate loadings of 39, 78, and 117 g L-1 , chalcopyrite reacted completely within minutes at room temperature and pressure. The XRD, SEM-EDS, and XPS measurements indicate that chalcopyrite reacts to form copper(I) chloride (CuCl). After the reductive treatment, the mineral products are leached by iron(III) sulfate to demonstrate the complete extraction of copper. The chromium(II) ion may be regenerated by an electrolysis unit inspired by an iron chromium flow battery in a practical industrial process.


Assuntos
Cloretos , Cobre , Compostos Férricos , Cromo , Ferro
3.
Sci Rep ; 8(1): 8910, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891986

RESUMO

This study examines the translation and rotation of a spherical colloid straddling the (upper) air/liquid interface of a thin, planar, liquid film bounded from below by either a solid or a gas/liquid interface. The goal is to obtain numerical solutions for the hydrodynamic flow in order to understand the influence of the film thickness and the lower interface boundary condition. When the colloid translates on a film above a solid, the viscous resistance increases significantly as the film thickness decreases due to the fluid-solid interaction, while on a free lamella, the drag decreases due to the proximity to the free (gas/liquid) surface. When the colloid rotates, the contact line of the interface moves relative to the colloid surface. If no-slip is assumed, the stress becomes infinite and prevents the rotation. Here finite slip is used to resolve the singularity, and for small values of the slip coefficient, the rotational viscous resistance is dominated by the contact line stress and is surprisingly less dependent on the film thickness and the lower interface boundary condition. For a colloid rotating on a semi-infinite liquid layer, the rotational resistance is largest when the colloid just breaches the interface from the liquid side.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...