Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Behav Neurosci ; 16: 950000, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212195

RESUMO

Persistent glucocorticoid elevation consistent with chronic stress exposure can lead to psychopathology, including mood and anxiety disorders. Women and stress-exposed adolescents are more likely to be diagnosed with mood disorders, suggesting that sex and age are important factors in determining vulnerability, though much remains to be determined regarding the mechanisms underlying this risk. Thus, the aim of the present experiments was to use the chronic corticosterone (CORT) exposure paradigm, a model of depression-like behavior that has previously been established primarily in adult males, to determine the mood-related effects of CORT in female and adolescent rats. Depression- and anxiety-like effects in adulthood were determined using the sucrose preference (SPT), the forced swim test (FST), the elevated plus maze, and fear conditioning. Basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) glutamate receptor subunit levels were then measured. In a subsequent experiment, adult male and female rats were tested for the effects of pharmacological activation (via AMPA) or inhibition (via NBQX) of AMPA receptors in the BLA on behavior in the FST. Overall, females showed reduced anxiety- and depressive-like behaviors relative to males. However, females treated with CORT in adolescence, but not adulthood, had increased immobility in the FST, indicative of depression-like behavior. In contrast, CORT did not alter behavior in adolescent-treated males, though the previously reported depression-like effect of adult CORT exposure was observed. Control females had higher expression of the AMPA receptor subunits GluA1 and GluA2/3 selectively in the BLA relative to males. Adolescent CORT treatment, however, decreased BLA GluA1 and GluA2/3 expression in females, but increased expression in males, consistent with the direction of depression-like behavioral effects. Male and female rats also demonstrated opposing patterns of response to BLA AMPA receptor modulation in the FST, with AMPA infusion magnifying the sex difference of decreased immobility in females. Overall, these experiments show that increased glutamate receptor function in the BLA may decrease the risk of developing depressive-like behavior, further supporting efforts to target glutamatergic receptors for the treatment of stress-related psychiatric disorders. These findings also support further focus on sex as a biological variable in neuropsychiatric research.

2.
Pain ; 163(6): e774-e785, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34510139

RESUMO

ABSTRACT: Voltage-gated calcium channels in sensory neurons underlie processes ranging from neurotransmitter release to gene expression and remain a therapeutic target for the treatment of pain. Yet virtually all we know about voltage-gated calcium channels has been obtained through the study of rodent sensory neurons and heterologously expressed channels. To address this, high voltage-activated (HVA) Ca2+ currents in dissociated human and rat dorsal root ganglion neurons were characterized with whole-cell patch clamp techniques. The HVA currents from both species shared basic biophysical and pharmacological properties. However, HVA currents in human neurons differed from those in the rat in at least 3 potentially important ways: (1) Ca2+ current density was significantly smaller, (2) the proportion of nifedipine-sensitive currents was far greater, and (3) a subpopulation of human neurons displayed relatively large constitutive current inhibition. These results highlight the need to for the study of native proteins in their native environment before initiating costly clinical trials.


Assuntos
Cálcio , Gânglios Espinais , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Gânglios Espinais/metabolismo , Humanos , Técnicas de Patch-Clamp , Ratos , Células Receptoras Sensoriais/metabolismo
3.
J Neurosci ; 41(43): 8991-9007, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446571

RESUMO

Different peripheral nerve injuries cause neuropathic pain through distinct mechanisms. Even the site of injury may impact underlying mechanisms, as indicated by the clinical finding that the antiseizure drug carbamazepine (CBZ) relieves pain because of compression injuries of trigeminal but not somatic nerves. We leveraged this observation in the present study hypothesizing that because CBZ blocks voltage-gated sodium channels (VGSCs), its therapeutic selectivity reflects differences between trigeminal and somatic nerves with respect to injury-induced changes in VGSCs. CBZ diminished ongoing and evoked pain behavior in rats with chronic constriction injury (CCI) to the infraorbital nerve (ION) but had minimal effect in rats with sciatic nerve CCI. This difference in behavior was associated with a selective increase in the potency of CBZ-induced inhibition of compound action potentials in the ION, an effect mirrored in human trigeminal versus somatic nerves. The increase in potency was associated with a selective increase in the efficacy of the NaV1.1 channel blocker ICA-121431 and NaV1.1 protein in the ION, but no change in NaV1.1 mRNA in trigeminal ganglia. Importantly, local ICA-121431 administration reversed ION CCI-induced hypersensitivity. Our results suggest a novel therapeutic target for the treatment of trigeminal neuropathic pain.SIGNIFICANCE STATEMENT This study is based on evidence of differences in pain and its treatment depending on whether the pain is above (trigeminal) or below (somatic) the neck, as well as evidence that voltage-gated sodium channels (VGSCs) may contribute to these differences. The focus of the present study was on channels underlying action potential propagation in peripheral nerves. There were differences between somatic and trigeminal nerves in VGSC subtypes underlying action potential propagation both in the absence and presence of injury. Importantly, because the local block of NaV1.1 in the trigeminal nerve reverses nerve injury-induced mechanical hypersensitivity, the selective upregulation of NaV1.1 in trigeminal nerves suggests a novel therapeutic target for the treatment of pain associated with trigeminal nerve injury.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Carbamazepina/uso terapêutico , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Neuralgia do Trigêmeo/tratamento farmacológico , Analgésicos não Narcóticos/farmacologia , Animais , Carbamazepina/farmacologia , Feminino , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/biossíntese , Neuralgia/metabolismo , Medição da Dor/métodos , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Neuralgia do Trigêmeo/metabolismo
4.
Pain ; 161(7): 1636-1649, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32102022

RESUMO

Preclinical evidence has highlighted the importance of the µ-opioid peptide (MOP) receptor on primary afferents for both the analgesic actions of MOP receptor agonists, as well as the development of tolerance, if not opioid-induced hyperalgesia. There is also growing interest in targeting other opioid peptide receptor subtypes (δ-opioid peptide [DOP], κ-opioid peptide [KOP], and nociceptin/orphanin-FQ opioid peptide [NOP]) on primary afferents, as alternatives to MOP receptors, which may not be associated with as many deleterious side effects. Nevertheless, results from several recent studies of human sensory neurons indicate that although there are many similarities between rodent and human sensory neurons, there may also be important differences. Thus, the purpose of this study was to assess the distribution of opioid receptor subtypes among human sensory neurons. A combination of pharmacology, patch-clamp electrophysiology, Ca imaging, and single-cell semiquantitative polymerase chain reaction was used. Our results suggest that functional MOP-like receptors are present in approximately 50% of human dorsal root ganglion neurons. δ-opioid peptide-like receptors were detected in a subpopulation largely overlapping that with MOP-like receptors. Furthermore, KOP-like and NOP-like receptors are detected in a large proportion (44% and 40%, respectively) of human dorsal root ganglion neurons with KOP receptors also overlapping with MOP receptors at a high rate (83%). Our data confirm that all 4 opioid receptor subtypes are present and functional in human sensory neurons, where the overlap of DOP, KOP, and NOP receptors with MOP receptors suggests that activation of these other opioid receptor subtypes may also have analgesic efficacy.


Assuntos
Gânglios Espinais , Receptores Opioides , Analgésicos Opioides/farmacologia , Humanos , Neurônios , Peptídeos Opioides , Receptores Opioides kappa , Receptores Opioides mu
5.
Dev Cogn Neurosci ; 37: 100601, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30497917

RESUMO

Working memory develops over the course of adolescence, and neuroimaging studies find development-associated changes in the activity of prefrontal cortical brain regions. Establishment of a rodent model of working memory development would permit more comprehensive studies of the molecular and circuit basis for working memory development in health and disease. Thus, in this study, working memory performance was compared between adolescent and adult male Sprague-Dawley rats using an operant-based, delay-match-to-sample working memory task. Adolescent and adult rats showed similar rates of learning the task and similar performance at a low cognitive load (delays ≤ 6 s). However, when the cognitive load increased, adolescents exhibited impaired working memory performance relative to adults, until postnatal day 50 when performance was not significantly different. Despite evidence that cannabinoids disrupt working memory, we found no effect of acute treatment with the cannabinoid receptor agonist, WIN55212,2, at either age. Moreover, expression of glutamate and GABA receptor subunits was examined in the prelimbic and infralimbic prefrontal cortex across development. NMDA receptor subunit GluN2B expression significantly decreased with age in parallel with improvements in working memory. Thus, we show evidence that rats can be used as a model to study the molecular underpinnings of working memory development.


Assuntos
Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
6.
Neuron ; 99(6): 1274-1288.e6, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30236284

RESUMO

Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.


Assuntos
Neurônios Aferentes/efeitos dos fármacos , Dor/tratamento farmacológico , Receptores Opioides kappa/antagonistas & inibidores , Transdução de Sinais/fisiologia , Animais , Axônios/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/metabolismo , Manejo da Dor , Receptores Opioides kappa/metabolismo
7.
Neuropsychopharmacology ; 42(5): 989-1000, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27582345

RESUMO

Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, 'incubation of craving'). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction.


Assuntos
Comportamento Aditivo , Benzoxazinas/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Morfolinas/administração & dosagem , Naftalenos/administração & dosagem , Animais , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Subunidades Proteicas/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-B/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração
8.
ACS Omega ; 1(4): 636-647, 2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457153

RESUMO

This study is an experimental investigation of using biocarbon as renewable carbonaceous filler for engineering-plastic-based blends. Poly(trimethylene terephthalate) (PTT) and poly(lactic acid) (PLA) combined with a terpolymer were selected as the blend matrix. Biocarbon with various particle size ranges was segregated and used as filler. Depending on the particle size and aspect ratio of the biocarbon used, the microstructure of the composite was found to change. Composites having a biocarbon particle size range of 20-75 µm resulted in a morphology showing better dispersion of the blend components when compared with composites containing other biocarbon particle size ranges. Furthermore, the addition of epoxy-based multifunctional chain extender was found to result in much finer morphologies having dispersed polymer particles of very small size. Impact strength increased significantly in composites that possessed such morphologies favoring high energy dissipation mechanisms. A maximum notched Izod impact strength of 85 J/m was achieved in certain composite formulations, which is impressive considering the inherent brittleness of PTT and PLA. From rheological observations, incorporation of biocarbon increased viscosity, but the shear-thinning behavior of the matrix was preserved. By increasing the injection mold temperature, fast crystallization of PTT was achieved, which increased the heat deflection temperature of composites to 80 °C. This study shows that composites with overall improvement in mechanical and thermal performance can be produced by selecting biocarbon with appropriate particle sizes and suitable processing aids and conditions, which all together control the morphology and crystallinity.

9.
ACS Appl Mater Interfaces ; 7(21): 11203-14, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25988675

RESUMO

Poly(lactic acid) (PLA), one of the widely studied renewable resource based biopolymers, has yet to gain a strong commercial standpoint because of certain property limitations. This work is a successful attempt in achieving PLA biocomposites that showed concurrent improvements in impact strength and heat deflection temperature (HDT). Biocomposites were fabricated from a super toughened ternary blend of PLA, poly(ether-b-amide) elastomeric copolymer and ethylene-methyl acrylate-glycidyl methacrylate and miscanthus fibers. The effects of varying the processing parameters and addition of various nucleating agents were investigated. Crystallinity was controlled by optimizing the mold temperature and cycle time of the injection process. With the addition of 1 wt % aromatic sulfonate derivative (Lak-301) as a nucleating agent at a mold temperature of 110 °C, PLA biocomposites exhibited dramatic reduction in crystallization half time to 1.3 min with crystallinity content of 42%. Mechanical and thermal properties assessment for these biocomposites revealed a 4-fold increase in impact strength compared to neat PLA. The HDT of PLA biocomposites increased to 85 °C from 55 °C compared to neat PLA. Crystallization behavior was studied in detail using differential scanning calorimetry and was supported with observations from wide-angle X-ray diffraction profiles and polarized optical microscopy. The presence of a nucleating agent did not alter the crystal structure of PLA; however, a significant difference in spherulite size, crystallization rate and content was observed. Fracture surface morphology and distribution of nucleating agent in the PLA biocomposites were investigated through scanning electron microscopy.


Assuntos
Cristalização/métodos , Ácido Láctico/química , Extratos Vegetais/química , Poaceae/química , Polímeros/química , Força Compressiva , Dureza , Teste de Materiais , Poliésteres , Temperatura
10.
ACS Appl Mater Interfaces ; 6(15): 12436-48, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25029099

RESUMO

Multiphase blends of poly(lactic acid) (PLA), ethylene-methyl acrylate-glycidyl methacrylate (EMA-GMA) terpolymer, and a series of renewable poly(ether-b-amide) elastomeric copolymer (PEBA) were fabricated through reactive melt blending in an effort to improve the toughness of the PLA. Supertoughened PLA blend showing impact strength of ∼500 J/m with partial break impact behavior was achieved at an optimized blending ratio of 70 wt % PLA, 20 wt % EMA-GMA, and 10 wt % PEBA. Miscibility and thermal behavior of the binary blends PLA/PEBA and PLA/EMA-GMA, and the multiphase blends were also investigated through differential scanning calorimetric (DSC) and dynamic mechanical analysis (DMA). Phase morphology and fracture surface morphology of the blends were studied through scanning electron microscopy (SEM) and atomic force microscopy (AFM) to understand the strong corelation between the morphology and its significant effect on imparting tremendous improvement in toughness. A unique "multiple stacked structure" with partial encapsulation of EMA-GMA and PEBA minor phases was observed for the PLA/EMA-GMA/PEBA (70/20/10) revealing the importance of particular blend composition in enhancing the toughness. Toughening mechanism behind the supertoughened PLA blends have been established by studying the impact fractured surface morphology at different zones of fracture. Synergistic effect of good interfacial adhesion and interfacial cavitations followed by massive shear yielding of the matrix was believed to contribute to the enormous toughening effect observed in these multiphase blends.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...