Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 163(4): 1804-16, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24134884

RESUMO

Plant microtubules (MTs) play essential roles in cell division, anisotropic cell expansion, and overall organ morphology. Microtubule-associated proteins (MAPs) bind to MTs and regulate their dynamics, stability, and organization. Identifying the full set of MAPs in plants would greatly enhance our understanding of how diverse MT arrays are formed and function; however, few proteomics studies have characterized plant MAPs. Using liquid chromatography-tandem mass spectrometry, we identified hundreds of proteins from MAP-enriched preparations derived from cell suspension cultures of Arabidopsis (Arabidopsis thaliana). Previously reported MAPs, MT regulators, kinesins, dynamins, peroxisome-resident enzymes, and proteins implicated in replication, transcription, and translation were highly enriched. Dozens of proteins of unknown function were identified, among which 12 were tagged with green fluorescent protein (GFP) and examined for their ability to colocalize with MTs when transiently expressed in plant cells. Six proteins did indeed colocalize with cortical MTs in planta. We further characterized one of these MAPs, designated as BASIC PROLINE-RICH PROTEIN1 (BPP1), which belongs to a seven-member family in Arabidopsis. BPP1-GFP decorated interphase and mitotic MT arrays in transgenic Arabidopsis plants. A highly basic, conserved region was responsible for the in vivo MT association. Overexpression of BPP1-GFP stabilized MTs, caused right-handed helical growth in rapidly elongating tissues, promoted the formation of transverse MT arrays, and resulted in the outgrowth of epidermal cells in light-grown hypocotyls. Our high-quality proteome database of Arabidopsis MAP-enriched preparations is a useful resource for identifying novel MT regulators and evaluating potential MT associations of proteins known to have other cellular functions.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas Associadas aos Microtúbulos/isolamento & purificação , Proteínas Associadas aos Microtúbulos/metabolismo , Proliferação de Células , Células Cultivadas , Cromatografia Líquida , Proteínas de Fluorescência Verde/metabolismo , Cinesinas/metabolismo , Espectrometria de Massas , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Suspensões , Tubulina (Proteína)/metabolismo
2.
Plant Signal Behav ; 5(7): 848-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20448467

RESUMO

In plants, Ca(2+), phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates are major components of intracellular signaling. Several kinds of proteins and enzymes, such as calmodulin (CaM), protein kinase, protein phosphatase, and the Ca(2+) channel, mediate the signaling. Two new Ca(2+)-binding proteins were identified from Arabidopsis thaliana and named PCaP1 and PCaP2 [plasma membrane (PM)-associated Ca(2+) (cation)-binding protein 1 and 2]. PCaP1 has an intrinsically disordered region in the central and C-terminal parts. The PCaP1 gene is expressed in most tissues and the PCaP2 gene is expressed predominantly in root hairs and pollen tubes. We recently demonstrated that these proteins are N-myristoylated, stably anchored in the PM, and are bound with phosphatidylinositol phosphates, especially PtdInsP2s. Here we propose a model for the switching mechanism of Ca (2+)-signaling mediated by PtdInsPs. Ca(2+) forms a complex with CaM (Ca(2+)-CaM) when there is an increase in the cytosol free Ca(2+). The binding of PCaPs with Ca(2+)-CaM causes PCaPs to release PtdInsPs. Until the release of PtdInsPs, the signaling is kept in the resting state.

3.
Plant Cell Physiol ; 51(3): 366-79, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20061304

RESUMO

We found a new hydrophilic protein in Arabidopsis thaliana. Real-time PCR demonstrated that the protein was expressed in roots. Histochemical analysis of promoter-beta-glucuronidase fusions demonstrated its extensive expression in root hairs. The protein is rich in proline, glutamate, valine and lysine residues (PEVK-rich domain), and bound Ca(2+) even in the presence of Mg(2+) and K(+) when examined by the (45)Ca overlay assay. Treatment of seedlings with K(+), Mn(2+), Zn(2+), Na(+), ABA and gibberellic acid, and cold and drought stresses enhanced the transcription. Expression of the protein linked to green fluorescent protein in A. thaliana showed its plasma membrane localization and cell-specific expression in the epidermal cells including root hairs and the elongating pollen tubes. Therefore, we named the protein PCaP2 (plasma membrane-associated Ca(2+)-binding protein-2). The substitution of glycine at position 2 with alanine resulted in cytoplasmic localization of PCaP2. These results and the N-terminal characteristic motif suggest that PCaP2 is N-myristoylated at Gly2. We examined the capacity for binding to phosphatidylinositol phosphates (PtdInsPs), and found that PCaP2 interacts strongly with PtdIns(3,5)P(2), PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3), and weakly with PtdIns(3,4)P(2). Furthermore, calmodulin was associated with PCaP2 in a Ca(2+)-dependent manner, and its association weakened the interaction of PCaP2 with PtdInsPs. These results indicate that PCaP2 is involved in intracellular signaling through interaction with PtdInsPs and calmodulin in growing root hairs. PCaP2 was previously reported as microtubule-associated protein-18. We discuss the physiological roles of PCaP2 in relation to microtubules in cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calmodulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética , Alinhamento de Sequência
4.
J Biochem ; 144(4): 487-97, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18664522

RESUMO

PCaP1, a hydrophilic cation-binding protein, is bound to the plasma membrane in Arabidopsis thaliana. We focused on the physicochemical properties of PCaP1 to understand its uniqueness in terms of structure and binding of metal ions. On fluorescence analysis, PCaP1 showed a signal of structural change in the presence of Cu(2+). The near-UV CD spectra showed a marked change of PCaP1 in CuCl(2) solution. The far-UV CD spectra showed the presence of alpha-helices and the intrinsically unstructured region. However, addition of Cu(2+) gave no change in the far-UV CD spectra. These results indicate that Cu(2+) induced a change in the tertiary structure without changing the secondary structure. The protein was sensitive to proteinase in the presence of Cu(2+), supporting that Cu(2+) is involved in the structural change. The PCaP1 solution was titrated with CuCl(2) and the change in the fluorescence spectrum was monitored to characterize Cu(2+)-binding properties. The obtained values of K(d) for Cu(2+) and the ligand-binding number were 10 microM and six ions per molecule, respectively. These findings indicate that PCaP1 has a high Cu(2+)-binding capacity with a relatively high affinity. PCaP1 lacks cysteine and histidine residues. A large number of glutamate residues may be involved in the Cu(2+) binding.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cobre/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Dicroísmo Circular , Cinética , Proteínas de Membrana/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...