Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Matrix Biol ; 112: 190-218, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36028175

RESUMO

The low-density lipoprotein receptor-related protein 1 (LRP1) is a cell-surface receptor ubiquitously expressed in various tissues. It plays tissue-specific roles by mediating endocytosis of a diverse range of extracellular molecules. Dysregulation of LRP1 is involved in multiple conditions including osteoarthritis (OA) but little information is available about the specific profile of direct binding partners of LRP1 (ligandome) for each tissue, which would lead to a better understanding of its role in disease states. Here, we investigated adult articular cartilage where impaired LRP1-mediated endocytosis leads to tissue destruction. We used a top-down approach involving proteomic analysis of the LRP1 interactome in human chondrocytes, direct binding assays using purified LRP1 and ligand candidates, and validation in LRP1-deficient fibroblasts and human chondrocytes, as well as a novel Lrp1 conditional knockout (KO) mouse model. We found that inhibition of LRP1 and ligand interaction results in cell death, alteration of the entire secretome and transcriptional modulations in human chondrocytes. We identified a chondrocyte-specific LRP1 ligandome consisting of more than 50 novel ligand candidates. Surprisingly, 23 previously reported LRP1 ligands were not regulated by LRP1-mediated endocytosis in human chondrocytes. We confirmed direct LRP1 binding of HGFAC, HMGB1, HMGB2, CEMIP, SLIT2, ADAMTS1, TSG6, IGFBP7, SPARC and LIF, correlation between their affinity for LRP1 and the rate of endocytosis, and some of their intracellular localization. Moreover, a conditional LRP1 KO mouse model demonstrated a critical role of LRP1 in regulating the high-affinity ligands in cartilage in vivo. This systematic approach revealed the specificity and the extent of the chondrocyte LRP1 ligandome and identified potential novel therapeutic targets for OA.


Assuntos
Cartilagem Articular , Proteína HMGB1 , Osteoartrite , Adulto , Animais , Cartilagem Articular/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Humanos , Ligantes , Lipoproteínas LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Osteoartrite/genética , Osteoartrite/metabolismo , Proteômica/métodos
2.
Function (Oxf) ; 3(3): zqac013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462614

RESUMO

The auxiliary α2δ subunits of voltage-gated calcium (CaV) channels are key to augmenting expression and function of CaV1 and CaV2 channels, and are also important drug targets in several therapeutic areas, including neuropathic pain. The α2δ proteins are translated as preproteins encoding both α2 and δ, and post-translationally proteolyzed into α2 and δ subunits, which remain associated as a complex. In this study, we have identified ADAM17 as a key protease involved in proteolytic processing of pro-α2δ-1 and α2δ-3 subunits. We provide three lines of evidence: First, proteolytic cleavage is inhibited by chemical inhibitors of particular metalloproteases, including ADAM17. Second, proteolytic cleavage of both α2δ-1 and α2δ-3 is markedly reduced in cell lines by knockout of ADAM17 but not ADAM10. Third, proteolytic cleavage is reduced by the N-terminal active domain of TIMP-3 (N-TIMP-3), which selectively inhibits ADAM17. We have found previously that proteolytic cleavage into mature α2δ is essential for the enhancement of CaV function, and in agreement, knockout of ADAM17 inhibited the ability of α2δ-1 to enhance both CaV2.2 and CaV1.2 calcium currents. Finally, our data also indicate that the main site of proteolytic cleavage of α2δ-1 is the Golgi apparatus, although cleavage may also occur at the plasma membrane. Thus, our study identifies ADAM17 as a key protease required for proteolytic maturation of α2δ-1 and α2δ-3, and thus a potential drug target in neuropathic pain.


Assuntos
Neuralgia , Inibidor Tecidual de Metaloproteinase-3 , Humanos , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Canais de Cálcio Tipo N/genética , Proteólise , Cálcio da Dieta/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína ADAM17/genética
3.
Sci Rep ; 10(1): 12067, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694578

RESUMO

Matrix metalloproteinases (MMPs) and the related families of disintegrin metalloproteinases (ADAMs) and ADAMs with thrombospondin repeats (ADAMTSs) play a crucial role in extracellular matrix (ECM) turnover and shedding of cell-surface molecules. The proteolytic activity of metalloproteinases is post-translationally regulated by their endogenous inhibitors, known as tissue inhibitors of metalloproteinases (TIMPs). Several MMPs, ADAMTSs and TIMPs have been reported to be endocytosed by the low-density lipoprotein receptor-related protein-1 (LRP-1). Different binding affinities of these proteins for the endocytic receptor correlate with different turnover rates which, together with differences in their mRNA expression, determines their nett extracellular levels. In this study, we used surface plasmon resonance to evaluate the affinity between LRP-1 and a number of MMPs, ADAMs, ADAMTSs, TIMPs and metalloproteinase/TIMP complexes. This identified MMP-1 as a new LRP-1 ligand. Among the proteins analyzed, TIMP-3 bound to LRP-1 with highest affinity (KD = 1.68 nM). Additionally, we found that TIMP-3 can facilitate the clearance of its target metalloproteinases by bridging their binding to LRP-1. For example, the free form of MMP-1 was found to have a KD of 34.6 nM for LRP-1, while the MMP-1/TIMP-3 complex had a sevenfold higher affinity (KD = 4.96 nM) for the receptor. TIMP-3 similarly bridged binding of MMP-13 and MMP-14 to LRP-1. TIMP-1 and TIMP-2 were also found to increase the affinity of target metalloproteinases for LRP-1, albeit to a lesser extent. This suggests that LRP-1 scavenging of TIMP/metalloproteinase complexes may be a general mechanism by which inhibited metalloproteinases are removed from the extracellular environment.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Endocitose , Humanos , Cinética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-3/genética
4.
Sci Rep ; 9(1): 5487, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940840

RESUMO

L-selectin on T-cells is best known as an adhesion molecule that supports recruitment of blood-borne naïve and central memory cells into lymph nodes. Proteolytic shedding of the ectodomain is thought to redirect activated T-cells from lymph nodes to sites of infection. However, we have shown that activated T-cells re-express L-selectin before lymph node egress and use L-selectin to locate to virus-infected tissues. Therefore, we considered other roles for L-selectin proteolysis during T cell activation. In this study, we used T cells expressing cleavable or non-cleavable L-selectin and determined the impact of L-selectin proteolysis on T cell activation in virus-infected mice. We confirm an essential and non-redundant role for ADAM17 in TCR-induced proteolysis of L-selectin in mouse and human T cells and show that L-selectin cleavage does not regulate T cell activation measured by CD69 or TCR internalisation. Following virus infection of mice, L-selectin proteolysis promoted early clonal expansion of cytotoxic T cells resulting in an 8-fold increase over T cells unable to cleave L-selectin. T cells unable to cleave L-selectin showed delayed proliferation in vitro which correlated with lower CD25 expression. Based on these results, we propose that ADAM17-dependent proteolysis of L-selectin should be considered a regulator of T-cell activation at sites of immune activity.


Assuntos
Proteína ADAM17/metabolismo , Células Clonais/imunologia , Selectina L/metabolismo , Linfócitos T Citotóxicos/imunologia , Viroses/metabolismo , Proteína ADAM17/genética , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Movimento Celular , Células Cultivadas , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Selectina L/genética , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteólise , Viroses/imunologia
5.
J Immunol ; 202(5): 1501-1509, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659107

RESUMO

The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.


Assuntos
Proteína ADAM17/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Macrófagos/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/imunologia , Fatores de Necrose Tumoral/imunologia , Proteína ADAM17/antagonistas & inibidores , Células Cultivadas , Endotoxinas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Macrófagos/imunologia , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral
6.
J Struct Biol ; 203(3): 247-254, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29763735

RESUMO

Cleavage of collagen by collagenases such as matrix metalloproteinase 1 (MMP-1) is a key step in development, tissue remodeling, and tumor proliferation. The abundant heterotrimeric type I collagen composed of two α1(I) chains and one α2(I) chain is efficiently cleaved by MMP-1 at a unique site in the triple helix, a process which may be initiated by local unfolding within the peptide chains. Atypical homotrimers of the α1(I) chain, found in embryonic and cancer tissues, are very resistant to MMP cleavage. To investigate MMP-1 cleavage, recombinant homotrimers were constructed with sequences from the MMP cleavage regions of human collagen chains inserted into a host bacterial collagen protein system. All triple-helical constructs were cleaved by MMP-1, with α2(I) homotrimers cleaved efficiently at a rate similar to that seen for α1(II) and α1(III) homotrimers, while α1(I) homotrimers were cleaved at a much slower rate. The introduction of destabilizing Gly to Ser mutations within the human collagenase susceptible region of the α2(I) chain did not interfere with MMP-1 cleavage. Molecular dynamics simulations indicated a greater degree of transient hydrogen bond breaking in α2(I) homotrimers compared with α1(I) homotrimers at the MMP-1 cleavage site, and showed an extensive disruption of hydrogen bonding in the presence of a Gly to Ser mutation, consistent with chymotrypsin digestion results. This study indicates that α2(I) homotrimers are susceptible to MMP-1, proves that the presence of an α1(I) chain is not a requirement for α2(I) cleavage, and supports the importance of local unfolding of α2(I) in collagenase cleavage.


Assuntos
Colágeno Tipo I/química , Colagenases/química , Metaloproteinase 1 da Matriz/química , Neoplasias/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Proliferação de Células/genética , Colágeno/química , Colágeno/genética , Colágeno Tipo I/genética , Colagenases/genética , Humanos , Ligação de Hidrogênio , Metaloproteinase 1 da Matriz/genética , Simulação de Dinâmica Molecular , Neoplasias/patologia , Ligação Proteica , Conformação Proteica , Conformação Proteica em alfa-Hélice/genética , Streptococcus pyogenes/química
7.
Methods Mol Biol ; 1731: 107-122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29318548

RESUMO

Matrix metalloproteinases and the related metalloproteases are implicated in cancer progression. They are endopeptidases that require several defined amino acid residues in both N-terminal and C-terminal sides of the scissile bond. Fluorogenic Förster resonance energy transfer (FRET) substrates that harbor a fluorophore and a quencher on opposite sides of the scissile bond are conveniently used to measure their activities. In this chapter, we describe the principle of FRET substrates and how to use them to measure activities and kinetic parameters of endopeptidases.


Assuntos
Proteína ADAMTS4/metabolismo , Ensaios Enzimáticos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteína ADAMTS4/análise , Proteína ADAMTS4/genética , Sequência de Aminoácidos , Ensaios Enzimáticos/instrumentação , Transferência Ressonante de Energia de Fluorescência/instrumentação , Corantes Fluorescentes/metabolismo , Cinética , Mutação , Proteólise , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
MAbs ; 10(1): 118-128, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29185848

RESUMO

Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease with unknown biological function and a short domain structure. ADAMDEC1 mRNA has previously been demonstrated primarily in macrophages and mature dendritic cells. Here, we generated monoclonal antibodies (mAbs) against the mature ADAMDEC1 protein, as well as mAbs specific for the ADAMDEC1 pro-form, enabling further investigations of the metalloprotease. The generated mAbs bind ADAMDEC1 with varying affinity and represent at least six different epitope bins. Binding of mAbs to one epitope bin in the C-terminal disintegrin-like domain efficiently reduces the proteolytic activity of ADAMDEC1. A unique mAb, also recognizing the disintegrin-like domain, stimulates the caseinolytic activity of ADAMDEC1 while having no significant effect on the proteolysis of carboxymethylated transferrin. Using two different mAbs binding the disintegrin-like domain, we developed a robust, quantitative sandwich ELISA and demonstrate secretion of mature ADAMDEC1 protein by primary human macrophages. Surprisingly, we also found ADAMDEC1 present in human plasma with an approximate concentration of 0.5 nM. The presence of ADAMDEC1 both in human plasma and in macrophage cell culture supernatant were biochemically validated using immunoprecipitation and Western blot analysis demonstrating that ADAMDEC1 is secreted in a mature form.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Proteínas ADAM/sangue , Proteínas ADAM/imunologia , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Sítios de Ligação de Anticorpos , Ácidos Carboxílicos/metabolismo , Células Cultivadas , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Metilação , Camundongos , Inibidores de Proteases/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Transferrina/análogos & derivados , Transferrina/metabolismo
9.
Arch Oral Biol ; 85: 98-103, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29035723

RESUMO

OBJECTIVE: Periodontitis is characterized by local inflammation leading to tooth loss and severe destruction of alveolar bone. Raloxifene is a selective estrogen receptor modulator (SERM) that halts estrogen deficiency-induced systemic bone loss in postmenopausal osteoporosis without the side effects of cancer in breast and uterus. In this study, we examined the effects of raloxifene on alveolar bone mass in a mouse model with estrogen deficiency-induced periodontitis. METHODS: Periodontitis was induced by the injection of lipopolysaccharide (LPS) into the lower gingiva in ovariectomized (OVX) mice, and the alveolar bone and femur bone mineral density (BMD) were analyzed by dual-energy X-ray absorptiometry. To explore the direct osteoclast inhibitory effect of raloxifene, a co-culture system for osteoclast formation and organ culture of alveolar bone was established. RESULTS: When OVX mice were treated with raloxifene, the bone loss in both alveolar bone and femur were abrogated. Interleukin 1 and/or LPS stimulated the osteoclast formation and bone-resorbing activity; however, raloxifene did not show any inhibitory effect on the osteoclast formation or function. In vivo local injection of raloxifene also did not prevent bone resorption in a mouse model of periodontitis. However, the systemic treatment of raloxifene using a mini-osmotic pump did prevent the loss of BMD of alveolar bone induced by LPS. CONCLUSION: These results suggest that the SERM raloxifene systemically maintain alveolar bone mass in a mouse model of periodontitis with osteoporosis. Increasing the alveolar bone mass by SERMs treatment in patients with postmenopausal osteoporosis may be a useful approach to preventing the destruction of alveolar bone in late-onset periodontitis.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Densidade Óssea/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Cloridrato de Raloxifeno/farmacologia , Animais , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos
10.
FEBS Open Bio ; 7(8): 1178-1185, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28781957

RESUMO

Abnormalities of bone turnover are commonly observed in patients with chronic kidney disease (CKD), and the low-turnover bone disease is considered to be associated with low serum parathyroid hormone (PTH) levels and skeletal resistance to PTH. Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with CKD. Recently, we have reported that IS exacerbates low bone turnover induced by parathyroidectomy (PTX) in adult rats, and suggested that IS directly induces low bone turnover through the inhibition of bone formation by mechanisms unrelated to skeletal resistance to PTH. To define the direct action of IS in bone turnover, we examined the effects of IS on bone formation and bone resorption in vitro. In cultures of mouse primary osteoblasts, IS suppressed the expression of osterix, osteocalcin, and bone morphogenetic protein 2 (BMP2) mRNA and clearly inhibited the formation of mineralized bone nodules. Therefore, IS directly acts on osteoblastic cells to suppress bone formation. On the other hand, IS suppressed interleukin (IL)-1-induced osteoclast formation in cocultures of bone marrow cells and osteoblasts, and IL-1-induced bone resorption in calvarial organ cultures. In cultures of osteoblasts, IS suppressed the mRNA expression of RANKL, the receptor activator of NF-κB ligand, which is a pivotal factor for osteoclast differentiation. Moreover, IS acted on osteoclast precursor, bone marrow-derived macrophages and RAW264.7 cells, and suppressed RANKL-dependent differentiation into mature osteoclasts. IS may induce low-turnover bone disease in patients with CKD by its direct action on both osteoblasts and osteoclast precursors to suppress bone formation and bone resorption.

11.
Mol Pharmacol ; 92(4): 459-468, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798097

RESUMO

Osteoarthritis is a common degenerative joint disease for which no disease-modifying drugs are currently available. Attempts to treat the disease with small molecule inhibitors of the metalloproteinases that degrade the cartilage matrix have been hampered by a lack of specificity. We aimed to inhibit cartilage degradation by augmenting levels of the endogenous metalloproteinase inhibitor, tissue inhibitor of metalloproteinases (TIMP)-3, through blocking its interaction with the endocytic scavenger receptor, low-density lipoprotein receptor-related protein 1 (LRP1). We discovered that suramin (C51H40N6O23S6) bound to TIMP-3 with a KD value of 1.9 ± 0.2 nM and inhibited its endocytosis via LRP1, thus increasing extracellular levels of TIMP-3 and inhibiting cartilage degradation by the TIMP-3 target enzyme, adamalysin-like metalloproteinase with thrombospondin motifs 5. NF279 (8,8'-[carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino)]bis-1,3,5-naphthalenetrisulfonic acid hexasodium salt), a structural analog of suramin, has an increased affinity for TIMP-3 and increased ability to inhibit TIMP-3 endocytosis and protect cartilage. Suramin is thus a promising scaffold for the development of novel therapeutics to increase TIMP-3 levels and inhibit cartilage degradation in osteoarthritis.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Espaço Extracelular/metabolismo , Osteoartrite/metabolismo , Suramina/uso terapêutico , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Linhagem Celular Tumoral , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Relação Dose-Resposta a Droga , Espaço Extracelular/efeitos dos fármacos , Células HEK293 , Humanos , Técnicas de Cultura de Órgãos , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Ligação Proteica/fisiologia , Suramina/farmacologia , Suínos
12.
MAbs ; 9(4): 595-602, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28306378

RESUMO

The potent aggrecanase ADAMTS-5 is constitutively secreted by chondrocytes, but it is rapidly endocytosed in normal cartilage via the cell surface endocytic receptor LRP1. Therefore it is difficult to detect the total ADAMTS-5 activity produced. In this study, we isolated a monoclonal anti-ADAMTS-5 antibody 1B7 that blocks LRP1-mediated internalization without affecting the aggrecanolytic activity. Addition of 1B7 to cultured human chondrocytes revealed the full aggrecanolytic activity of ADAMTS-5 generated by the cells. 1B7 is a useful tool to estimate the ADAMTS-5 activity and to identify its potential roles in the tissues.


Assuntos
Proteína ADAMTS5 , Anticorpos Monoclonais Murinos/farmacologia , Condrócitos/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína ADAMTS5/antagonistas & inibidores , Proteína ADAMTS5/metabolismo , Animais , Bovinos , Condrócitos/citologia , Humanos , Camundongos
13.
Arthritis Rheumatol ; 69(6): 1246-1256, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28235248

RESUMO

OBJECTIVE: The aggrecanase ADAMTS-5 and the collagenase matrix metalloproteinase 13 (MMP-13) are constitutively secreted by chondrocytes in normal cartilage, but rapidly endocytosed via the cell surface endocytic receptor low-density lipoprotein receptor-related protein 1 (LRP-1) and subsequently degraded. This endocytic system is impaired in osteoarthritic (OA) cartilage due to increased ectodomain shedding of LRP-1. The aim of this study was to identify the LRP-1 sheddase(s) in human cartilage and to test whether inhibition of LRP-1 shedding prevents cartilage degradation in OA. METHODS: Cell-associated LRP-1 and soluble LRP-1 (sLRP-1) released from human cartilage explants and chondrocytes were measured by Western blot analysis. LRP-1 sheddases were identified by proteinase inhibitor profiling and gene silencing with small interfering RNAs. Specific monoclonal antibodies were used to selectively inhibit the sheddases. Degradation of aggrecan and collagen in human OA cartilage was measured by Western blot analysis using an antibody against an aggrecan neoepitope and a hydroxyproline assay, respectively. RESULTS: Shedding of LRP-1 was increased in OA cartilage compared with normal tissue. Shed sLRP-1 bound to ADAMTS-5 and MMP-13 and prevented their endocytosis without interfering with their proteolytic activities. Two membrane-bound metalloproteinases, ADAM-17 and MMP-14, were identified as the LRP-1 sheddases in cartilage. Inhibition of their activities restored the endocytic capacity of chondrocytes and reduced degradation of aggrecan and collagen in OA cartilage. CONCLUSION: Shedding of LRP-1 is a key link to OA progression. Local inhibition of LRP-1 sheddase activities of ADAM-17 and MMP-14 is a unique way to reverse matrix degradation in OA cartilage and could be effective as a therapeutic approach.


Assuntos
Anticorpos Monoclonais/farmacologia , Colagenases/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Proteólise/efeitos dos fármacos , Proteína ADAM17/análise , Proteína ADAM17/metabolismo , Proteína ADAMTS5/metabolismo , Adolescente , Adulto , Agrecanas/efeitos dos fármacos , Cartilagem Articular/metabolismo , Criança , Condrócitos/fisiologia , Colágeno/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/análise , Metaloproteinase 14 da Matriz/metabolismo , Pessoa de Meia-Idade , Osteoartrite/fisiopatologia , Adulto Jovem
14.
Matrix Biol ; 59: 69-79, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27476612

RESUMO

Tissue inhibitor of metalloproteinases 3 (TIMP-3) is a key regulator of extracellular matrix turnover for its ability to inhibit matrix metalloproteinases (MMPs), adamalysin-like metalloproteinases (ADAMs) and ADAMs with thrombospondin motifs (ADAMTSs). TIMP-3 is a secreted protein whose extracellular levels are regulated by endocytosis via the low-density-lipoprotein receptor-related protein-1 (LRP-1). In this study we developed a molecule able to "trap" TIMP-3 extracellularly, thereby increasing its tissue bioavailability. LRP-1 contains four ligand-binding clusters. In order to investigate the TIMP-3 binding site on LRP-1, we generated soluble minireceptors (sLRPs) containing the four distinct binding clusters or part of each cluster. We used an array of biochemical methods to investigate the binding of TIMP-3 to different sLRPs. We found that TIMP-3 binds to the ligand-binding cluster II of the receptor with the highest affinity and a soluble minireceptor containing the N-terminal half of cluster II specifically blocked TIMP-3 internalization, without affecting the turnover of metalloproteinases. Mass spectrometry-based secretome analysis showed that this minireceptor, named T3TRAP, selectively increased TIMP-3 levels in the extracellular space and inhibited constitutive shedding of a number of cell surface proteins. In conclusion, T3TRAP represents a biological tool that can be used to modulate TIMP-3 levels in the tissue and could be potentially developed as a therapy for diseases characterized by a deficit of TIMP-3, including arthritis.


Assuntos
Células Epiteliais/metabolismo , Matriz Extracelular/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores Artificiais/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Sítios de Ligação , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Endocitose , Células Epiteliais/citologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Cinética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Anotação de Sequência Molecular , Neuroglia/citologia , Neuroglia/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Receptores Artificiais/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Solubilidade , Inibidor Tecidual de Metaloproteinase-3/genética , Transfecção
15.
PLoS One ; 11(12): e0167971, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28002442

RESUMO

Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality.


Assuntos
Osso e Ossos/fisiologia , Cartilagem/metabolismo , Lâmina de Crescimento/fisiologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Osso e Ossos/patologia , Células Cultivadas , Colágeno Tipo II/genética , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Lâmina de Crescimento/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Regiões Promotoras Genéticas , Resistência à Tração , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Inibidor Tecidual de Metaloproteinase-3/genética
16.
Proc Natl Acad Sci U S A ; 113(39): 10884-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27630193

RESUMO

It is well established that the expression profiles of multiple and possibly redundant matrix-remodeling proteases (e.g., collagenases) differ strongly in health, disease, and development. Although enzymatic redundancy might be inferred from their close similarity in structure, their in vivo activity can lead to extremely diverse tissue-remodeling outcomes. We observed that proteolysis of collagen-rich natural extracellular matrix (ECM), performed uniquely by individual homologous proteases, leads to distinct events that eventually affect overall ECM morphology, viscoelastic properties, and molecular composition. We revealed striking differences in the motility and signaling patterns, morphology, and gene-expression profiles of cells interacting with natural collagen-rich ECM degraded by different collagenases. Thus, in contrast to previous notions, matrix-remodeling systems are not redundant and give rise to precise ECM-cell crosstalk. Because ECM proteolysis is an abundant biochemical process that is critical for tissue homoeostasis, these results improve our fundamental understanding its complexity and its impact on cell behavior.


Assuntos
Matriz Extracelular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Proteólise , Homologia de Sequência de Aminoácidos , Animais , Junções Célula-Matriz/metabolismo , Colágeno/metabolismo , Colágeno/ultraestrutura , Elasticidade , Matriz Extracelular/ultraestrutura , Fibroblastos/metabolismo , Humanos , Imageamento Tridimensional , Análise de Componente Principal , Ratos , Reologia , Viscosidade
17.
J Biol Chem ; 291(42): 22160-22172, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27582494

RESUMO

Tissue inhibitor of metalloproteinases-3 (TIMP-3) is a central inhibitor of matrix-degrading and sheddase families of metalloproteinases. Extracellular levels of the inhibitor are regulated by the balance between its retention on the extracellular matrix and its endocytic clearance by the scavenger receptor low density lipoprotein receptor-related protein 1 (LRP1). Here, we used molecular modeling to predict TIMP-3 residues potentially involved in binding to LRP1 based on the proposed LRP1 binding motif of 2 lysine residues separated by about 21 Å and mutated the candidate lysine residues to alanine individually and in pairs. Of the 22 mutants generated, 13 displayed a reduced rate of uptake by HTB94 chondrosarcoma cells. The two mutants (TIMP-3 K26A/K45A and K42A/K110A) with lowest rates of uptake were further evaluated and found to display reduced binding to LRP1 and unaltered inhibitory activity against prototypic metalloproteinases. TIMP-3 K26A/K45A retained higher affinity for sulfated glycosaminoglycans than K42A/K110A and exhibited increased affinity for ADAMTS-5 in the presence of heparin. Both mutants inhibited metalloproteinase-mediated degradation of cartilage at lower concentrations and for longer than wild-type TIMP-3, indicating that their increased half-lives improved their ability to protect cartilage. These mutants may be useful in treating connective tissue diseases associated with increased metalloproteinase activity.


Assuntos
Neoplasias Ósseas/metabolismo , Condrossarcoma/metabolismo , Endocitose , Matriz Extracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Cartilagem/metabolismo , Cartilagem/patologia , Linhagem Celular Tumoral , Condrossarcoma/genética , Condrossarcoma/patologia , Matriz Extracelular/genética , Matriz Extracelular/patologia , Heparina/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Neoplasias/genética , Inibidor Tecidual de Metaloproteinase-3/genética
18.
J Biol Chem ; 291(40): 20891-20899, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27539855

RESUMO

The tyrosine kinase inhibitor TAS-115 that blocks VEGF receptor and hepatocyte growth factor receptor MET signaling exhibits antitumor properties in xenografts of human gastric carcinoma. In this study, we have evaluated the efficacy of TAS-115 in preventing prostate cancer metastasis to the bone and bone destruction using the PC3 cell line. When PC3 cells were injected into proximal tibiae in nude mouse, severe trabecular and cortical bone destruction and subsequent tumor growths were detected. Oral administration of TAS-115 almost completely inhibited both PC3-induced bone loss and PC3 cell proliferation by suppressing osteoclastic bone resorption. In an ex vivo bone organ culture, PC3 cells induced osteoclastic bone resorption when co-cultured with calvarial bone, but TAS-115 effectively suppressed the PC3-induced bone destruction. We found that macrophage colony-stimulating factor-dependent macrophage differentiation and subsequent receptor activator of NF-κB ligand-induced osteoclast formation were largely suppressed by adding TAS-115. The phosphorylation of the macrophage colony-stimulating factor receptor FMS and osteoclast related kinases such as ERK and Akt were also suppressed by the presence of TAS-115. Gene expression profiling showed that FMS expression was only seen in macrophage and in the osteoclast cell lineage. Our study indicates that tyrosine kinase signaling in host pre-osteoclasts/osteoclasts is critical for bone destruction induced by tumor cells and that targeting of MET/VEGF receptor/FMS activity makes it a promising therapeutic candidate for the treatment of prostate cancer patients with bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Reabsorção Óssea/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Osteoclastos/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Quinolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Tioureia/análogos & derivados , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Osteoclastos/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Tioureia/farmacologia
19.
Biochem Biophys Res Commun ; 478(1): 154-161, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27450806

RESUMO

The metastasis of tumors to bone is known to be promoted by prostaglandin E2 (PGE2) produced by the tumor host stromal tissue. Although bone metastases frequently occur in prostate cancer patients, the significance of PGE2 in stromal responses to the tumor is not known. In this study, we report that PGE2 and its receptor EP4 play a pivotal role in bone destruction and metastasis in an experimental metastasis model of prostate cancer in nude mice. Using human prostate cancer PC-3 cells that are stably transfected with luciferase, we showed that the development of bone metastasis was accompanied by increased osteoclastic bone resorption in the bone metastasis microenvironment, and could be abrogated by an EP4 receptor antagonist. The growth of PC-3 cells in vitro was not influenced by PGE2 or by the EP4 receptor. However, cell-cell interactions between fixed PC-3 cells and host osteoblasts induced PGE2 production and RANKL expression in the osteoblasts. Addition of an EP4 antagonist suppressed both PGE2 and RANKL expression induced by the PC3-osteoblast interaction, which would have consequent effects on osteoclast activation and osteolysis. These results indicate that the blockage of PGE2-EP4 signaling prevents the bone destruction required for prostate cancer metastases, and that this is, in part due to the abrogation of bone cell responses. The study provides further evidence that an EP4 antagonist is a candidate for the treatment of prostate cancer in the blockade of bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Animais , Neoplasias Ósseas/patologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
20.
Biochem Biophys Res Commun ; 478(1): 279-285, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402268

RESUMO

Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERß. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male.


Assuntos
Androgênios/metabolismo , Boranos/administração & dosagem , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Boranos/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos , Orquiectomia , Osteoporose/patologia , Ovariectomia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...