Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36979403

RESUMO

Remnant lipoproteins (RLs), which are typically present at high concentrations in patients with type 2 diabetes mellitus (T2DM), are associated with cardiovascular disease (CVD). Although an RL cholesterol homogeneous assay (RemL-C) is available for the measurement of RL concentrations, there have been no studies of the relationship between RemL-C and clinical parameters in T2DM. Therefore, we evaluated the relationships between RemL-C and CVD-related parameters in patients with T2DM. We performed a cross-sectional study of 169 patients with T2DM who were hospitalized at Kumamoto University Hospital. Compared with those with low RemL-C, those with higher RemL-C had higher fasting plasma glucose, homeostasis model assessment for insulin resistance (HOMA-R), total cholesterol, triglyceride, small dense low-density lipoprotein cholesterol (sdLDL-C), and urinary albumin-creatinine ratio; and lower high-density lipoprotein cholesterol, adiponectin, and ankle brachial pressure index (ABI). Multivariate logistic regression analysis showed that sdLDL-C and ABI were significantly and independently associated with high RemL-C. Although LDL-C was lower in participants with CVD, there was no difference in RemL-C between participants with or without CVD. Thus, RemL-C may represent a useful index of lipid and glucose metabolism, and that may be a marker of peripheral atherosclerotic disease (PAD) in male patients with T2DM.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Estudos Transversais , Colesterol , Lipoproteínas , Triglicerídeos , LDL-Colesterol
2.
Anal Biochem ; 613: 114019, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189705

RESUMO

Existing methods to measure high-density lipoprotein cholesterol (HDL-C) subclasses (HDL2-C and HDL3-C) are complex and require proficiency, and thus there is a need for a convenient, homogeneous assay to determine HDL-C subclasses in serum. Here, cholesterol reactivities in lipoprotein fractions [HDL2, HDL3, low-density lipoprotein (LDL), and very-low-density lipoprotein (VLDL)] toward polyethylene glycol (PEG)-modified enzymes were determined in the presence of varying concentrations of dextran sulfate and magnesium nitrate. Particle sizes formed in the lipoprotein fractions were measured by dynamic light scattering. We optimized the concentrations of dextran sulfate and magnesium nitrate before assay with PEG-modified enzymes to provide selectivity for HDL3-C. On addition of dextran sulfate and magnesium nitrate, the sizes of particles of HDL2, LDL, and VLDL increased, but the size of HDL3 fraction particles remained constant, allowing only HDL3-C to participate in coupled reactions with the PEG-modified enzymes. In serum from both healthy volunteers and patients with type 2 diabetes, a good correlation was observed between the proposed assay and ultracentrifugation in the determination of HDL-C subclasses. The assay proposed here enables convenient and accurate determination of HDL-C subclasses in serum on a general automatic analyzer and enables low-cost routine diagnosis without preprocessing.


Assuntos
Bioensaio/métodos , HDL-Colesterol/análise , HDL-Colesterol/sangue , Ensaios Enzimáticos/métodos , Lipoproteínas HDL3/análise , Lipoproteínas HDL3/sangue , Calibragem , Colesterol Oxidase/química , Colesterol Oxidase/metabolismo , HDL-Colesterol/metabolismo , Sulfato de Dextrana/química , Humanos , Lipoproteínas HDL2/análise , Lipoproteínas HDL2/sangue , Lipoproteínas HDL2/metabolismo , Lipoproteínas HDL3/metabolismo , Lipoproteínas LDL/análise , Lipoproteínas LDL/sangue , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/análise , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Compostos de Magnésio/química , Nitratos/química , Tamanho da Partícula , Polietilenoglicóis/química , Reprodutibilidade dos Testes , Esterol Esterase/química , Esterol Esterase/metabolismo , Ultracentrifugação
3.
Perception ; 40(11): 1350-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22416592

RESUMO

We report a new angle illusion observed when viewing a real scene involving a straight road. The scene portrays two white lines which outline a traffic lane on a road and converge to a vanishing point. In experiment 1, observers estimated the angle created by these converging lines in this scene or in its image projected onto a screen. Results showed strong underestimation of the angle, ie over 50% for observations of both the real scene and its projected image. Experiment 2 assessed how depth cues in projected images influence the angle illusion. Results showed that this angle illusion disappeared when scene information surrounding convergent lines was removed. In addition, the illusion was attenuated with projection of an inverted scene image. These findings are interpreted in terms of a misadoption of depth information in the processing of angle perception in a flat image; in turn, this induces a massive angle illusion.


Assuntos
Percepção de Profundidade/fisiologia , Ilusões Ópticas/fisiologia , Orientação/fisiologia , Percepção Visual/fisiologia , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa
4.
Anal Chim Acta ; 600(1-2): 105-13, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17903471

RESUMO

A rapid and sensitive immunoassay based on a sequential injection analysis (SIA) using magnetic microbeads for the determination of alkylphenol polyethoxylates (APnEOs) is described. An SIA system was constructed from a syringe pump, a switching valve, a flow-through type immunoreaction cell equipped with a photon counting unit and a neodymium magnet. Magnetic beads, to which an anti-APnEOs monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in and from the immunoreaction cell were controlled by means of a neodymium magnet and adjusting the flow of a carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-APnEOs monoclonal antibody immobilized on the magnetic beads with a sample APnEOs and a horseradish peroxidase (HRP)-labeled APnEOs in the same sample solution, and was based on the subsequent chemiluminscence reaction of HRP on the magnetic microbeads with a luminol solution containing hydrogen peroxide and p-iodophenol. The anti-APnEOs antibody was immobilized on the magnetic microbeads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of the magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced in the immunoreaction cell and trapped in it by the neodymium magnet, which was equipped beneath the immunoreaction cell. An APnEOs sample solution containing the HRP-labeled APnEOs at a constant concentration, and a luminol solution containing hydrogen peroxide and p-iodophenol were sequentially introduced into the immunoreaction cell, according to an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the immunoreaction cell by collecting the emitted light with a lens. A typical sigmoidal calibration curve was obtained, when the logarithm of the concentration of APnEOs was plotted against the chemiluminescence intensity as the number of photons in 100 ms using standard APnEOs sample solutions at various concentrations (0-1000 ppb) under optimum conditions. The lower detection limit defined as IC(80) is ca 10 ppb. The time required for analysis is less than 15 min per a sample. The present method was successfully applied to the determination of APnEOs in river water.


Assuntos
Análise de Injeção de Fluxo/métodos , Imunoensaio/métodos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Magnetismo , Microesferas , Tensoativos/química , Animais , Anticorpos/imunologia , Calibragem , Simulação por Computador , Análise de Injeção de Fluxo/instrumentação , Água Doce/análise , Peroxidase do Rábano Silvestre/metabolismo , Imunoensaio/instrumentação , Camundongos , Estrutura Molecular , Rios/química
5.
Talanta ; 68(2): 231-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970310

RESUMO

A rapid and sensitive immunoassay for the determination of linear alkylbenzene sulfonates (LAS) is described. The method involves a sequential injection analysis (SIA) system equipped with a chemiluminescence detector and a neodymium magnet. Magnetic beads, to which an anti-LAS monoclonal antibody was immobilized, were used as a solid support in an immunoassay. The introduction, trapping and release of the magnetic beads in the flow cell were controlled by means of a neodymium magnet and adjusting the flow of the carrier solution. The immunoassay was based on an indirect competitive immunoreaction of an anti-LAS monoclonal antibody on the magnetic beads and the LAS sample and horseradish peroxidase (HRP)-labeled LAS, and was based on the subsequent chemiluminscence reaction of HRP with hydrogen peroxide and p-iodophenol, in a luminol solution. The anti-LAS antibody was immobilized on the beads by coupling the antibody with the magnetic beads after activation of a carboxylate moiety on the surface of magnetic beads that had been coated with a polylactic acid film. The antibody immobilized magnetic beads were introduced, and trapped in the flow cell equipped with the neodymium magnet, an LAS solution containing HRP-labeled LAS at constant concentration and the luminol solution were sequentially introduced into the flow cell based on an SIA programmed sequence. Chemiluminescence emission was monitored by means of a photon counting unit located at the upper side of the flow cell by collecting the emitted light with a lens. A typical sigmoid calibration curve was obtained, when the logarithm of the concentration of LAS was plotted against the chemiluminescence intensity using various concentrations of standard LAS samples (0-500ppb) under optimum conditions. The time required for analysis is less than 15min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...