Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 2(1): 109-115, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35098227

RESUMO

Metal-organic frameworks (MOFs), made from various metal nodes and organic linkers, provide diverse research platforms for proton conduction. Here, we report on the superprotonic conduction of a Pt dimer based MOF, [Pt2(MPC)4Cl2Co(DMA)(HDMA)·guest] (H2MPC, 6-mercaptopyridine-3-carboxylic acid; DMA, dimethylamine). In this framework, a protic dimethylammonium cation (HDMA+) is trapped inside a pore through hydrogen bonding with an MPC ligand. Proton conductivity and X-ray measurements revealed that trapped HDMA+ works as a preinstalled switch, where HDMA+ changes its relative position and forms an effective proton-conducting pathway upon hydration, resulting in more than 105 times higher proton conductivity in comparison to that of the dehydrated form. Moreover, the anisotropy of single-crystal proton conductivity reveals the proton-conducting direction within the crystal. The present results offer insights into functional materials having a strong coupling of molecular dynamic motion and transport properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...