Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 92: 36-50, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160508

RESUMO

The type 1 parathyroid hormone receptor (PTH1R) is a key regulator of calcium homeostasis and bone turnover. Here, we employed SILAC-based quantitative mass spectrometry and bioinformatic pathways analysis to examine global changes in protein phosphorylation following short-term stimulation of endogenously expressed PTH1R in osteoblastic cells in vitro. Following 5min exposure to the conventional agonist, PTH(1-34), we detected significant changes in the phosphorylation of 224 distinct proteins. Kinase substrate motif enrichment demonstrated that consensus motifs for PKA and CAMK2 were the most heavily upregulated within the phosphoproteome, while consensus motifs for mitogen-activated protein kinases were strongly downregulated. Signaling pathways analysis identified ERK1/2 and AKT as important nodal kinases in the downstream network and revealed strong regulation of small GTPases involved in cytoskeletal rearrangement, cell motility, and focal adhesion complex signaling. Our data illustrate the utility of quantitative mass spectrometry in measuring dynamic changes in protein phosphorylation following GPCR activation.


Assuntos
Redes Reguladoras de Genes/fisiologia , Proteômica , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular Transformada , Camundongos , Hormônio Paratireóideo/genética , Hormônio Paratireóideo/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Adv Cancer Res ; 126: 137-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25727147

RESUMO

The inducible, nutrient-sensitive posttranslational modification of protein Ser/Thr residues with O-linked ß-N-acetylglucosamine (O-GlcNAc) occurs on histones, transcriptional regulators, metabolic enzymes, oncogenes, tumor suppressors, and many critical intermediates of growth factor signaling. Cycling of O-GlcNAc modification on and off of protein substrates is catalyzed by the actions of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. To date, there are less than 150 publications addressing the role of O-GlcNAc modification in cancer and over half were published in the last 2 years. These studies have clearly established that increased expression of OGT and hyper-O-GlcNAcylation is common to human cancers of breast, prostate, colon, lung, and pancreas. Furthermore, attenuating OGT activity reduces tumor growth in vitro and metastasis in vivo. This chapter discusses the structure and function of the O-GlcNAc cycling enzymes, mechanisms by which protein O-GlcNAc modification sense changes in nutrient status, the influence of O-GlcNAc cycling enzymes on glucose metabolism, and provides an overview of recent observations regarding the role of O-GlcNAcylation in cancer.


Assuntos
Acetilglucosamina/metabolismo , Epigenômica , Alimentos , Redes e Vias Metabólicas , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Glicosilação , Humanos , Neoplasias/genética
3.
Mol Cell Proteomics ; 13(12): 3381-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25187572

RESUMO

Runx2 is the master switch controlling osteoblast differentiation and formation of the mineralized skeleton. The post-translational modification of Runx2 by phosphorylation, ubiquitinylation, and acetylation modulates its activity, stability, and interactions with transcriptional co-regulators and chromatin remodeling proteins downstream of osteogenic signals. Characterization of Runx2 by electron transfer dissociation tandem mass spectrometry revealed sites of O-linked N-acetylglucosamine (O-GlcNAc) modification, a nutrient-responsive post-translational modification that modulates the action of numerous transcriptional effectors. O-GlcNAc modification occurs in close proximity to phosphorylated residues and novel sites of arginine methylation within regions known to regulate Runx2 transactivation. An interaction between Runx2 and the O-GlcNAcylated, O-GlcNAc transferase enzyme was also detected. Pharmacological inhibition of O-GlcNAcase (OGA), the enzyme responsible for the removal of O-GlcNAc from Ser/Thr residues, enhanced basal (39.9%) and BMP2/7-induced (43.3%) Runx2 transcriptional activity in MC3T3-E1 pre-osteoblasts. In bone marrow-derived mesenchymal stem cells differentiated for 6 days in osteogenic media, inhibition of OGA resulted in elevated expression (24.3%) and activity (65.8%) of alkaline phosphatase (ALP) an early marker of bone formation and a transcriptional target of Runx2. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells in the presence of BMP2/7 for 8 days culminated in decreased OGA activity (39.0%) and an increase in the abundance of O-GlcNAcylated Runx2, as compared with unstimulated cells. Furthermore, BMP2/7-induced ALP activity was enhanced by 35.6% in bone marrow-derived mesenchymal stem cells differentiated in the presence of the OGA inhibitor, demonstrating that direct or BMP2/7-induced inhibition of OGA is associated with increased ALP activity. Altogether, these findings link O-GlcNAc cycling to the Runx2-dependent regulation of the early ALP marker under osteoblast differentiation conditions.


Assuntos
Acetilglucosamina/metabolismo , Células da Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Osteogênese/genética , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Arginina/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 7/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
4.
Amino Acids ; 46(10): 2305-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25173736

RESUMO

O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) catalyze the dynamic cycling of intracellular, post-translational O-GlcNAc modification on thousands of Ser/Thr residues of cytosolic, nuclear, and mitochondrial signaling proteins. The identification of O-GlcNAc modified substrates has revealed a functionally diverse set of proteins, and the extent of O-GlcNAcylation fluctuates in response to nutrients and cellular stress. As a result, OGT and OGA are implicated in widespread, nutrient-responsive regulation of numerous signaling pathways and transcriptional programs. These enzymes are required for normal embryonic development and are dysregulated in metabolic and age-related disease states. While a recent surge of interest in the field has contributed to understanding the functional impacts of protein O-GlcNAcylation, little is known about the upstream mechanisms which modulate OGT and OGA substrate targeting. This review focuses on elements of enzyme structure among splice variants, post-translational modification, localization, and regulatory protein interactions which drive the specificity of OGT and OGA toward different subsets of the cellular proteome. Ongoing efforts in this rapidly advancing field are aimed at revealing mechanisms of OGT and OGA regulation to harness the potential therapeutic benefit of manipulating these enzymes' activities.


Assuntos
Modelos Biológicos , Modelos Moleculares , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Biocatálise , Epigênese Genética , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , Conformação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transporte Proteico , Especificidade por Substrato , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética
5.
Mol Cell Proteomics ; 12(4): 945-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23443134

RESUMO

The nutrient-responsive ß-O-linked N-acetylglucosamine (O-GlcNAc) modification of critical effector proteins modulates signaling and transcriptional pathways contributing to cellular development and survival. An elevation in global protein O-GlcNAc modification occurs during the early stages of osteoblast differentiation and correlates with enhanced transcriptional activity of RUNX2, a key regulator of osteogenesis. To identify other substrates of O-GlcNAc transferase in differentiating MC3T3E1 osteoblasts, O-GlcNAc-modified peptides were enriched by wheat germ agglutinin lectin weak affinity chromatography and identified by tandem mass spectrometry using electron transfer dissociation. This peptide fragmentation approach leaves the labile O-linkage intact permitting direct identification of O-GlcNAc-modified peptides. O-GlcNAc modification was observed on enzymes involved in post-translational regulation, including MAST4 and WNK1 kinases, a ubiquitin-associated protein (UBAP2l), and the histone acetyltransferase CREB-binding protein. CREB-binding protein, a transcriptional co-activator that associates with CREB and RUNX2, is O-GlcNAcylated at Ser-147 and Ser-2360, the latter of which is a known site of phosphorylation. Additionally, O-GlcNAcylation of components of the TGFß-activated kinase 1 (TAK1) signaling complex, TAB1 and TAB2, occurred in close proximity to known sites of Ser/Thr phosphorylation and a putative nuclear localization sequence within TAB2. These findings demonstrate the presence of O-GlcNAc modification on proteins critical to bone formation, remodeling, and fracture healing and will enable evaluation of this modification on protein function and regulation.


Assuntos
Acetilgalactosamina/metabolismo , Glicoproteínas/metabolismo , Osteoblastos/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Acetilgalactosamina/química , Sequência de Aminoácidos , Animais , Configuração de Carboidratos , Células Cultivadas , Cromatografia de Afinidade , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicosilação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Osteogênese , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Proteoma/química , Proteoma/isolamento & purificação , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...