Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Oncol Lett ; 28(3): 424, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39021736

RESUMO

The use of tyrosine kinase inhibitors, such as imatinib, against the chronic myeloid leukemia (CML)-causing kinase BCR::ABL1 has become the model for successful targeted therapy. Nevertheless, drug resistance remains a clinical problem. Analysis of genome-wide expression and genetic aberrations of an in vitro imatinib-resistant CML cell line revealed downregulation of Bruton's tyrosine kinase (BTK), predominantly associated with B cell malignancies, and a novel BTK kinase domain variant in imatinib resistance. This raised the question of the role of BTK in imatinib-resistant CML. In the present study, BTK downregulation and the presence of the BTK variant c.1699_1700delinsAG p.(Glu567Arg) were confirmed in imatinib resistance in vitro. Similarly, BTK inhibition or small interfering RNA-mediated BTK knockdown reduced imatinib susceptibility by 84 and 71%, respectively. BTK overexpression was detrimental to CML cells, as proliferation was significantly reduced by 20.5% under imatinib treatment. In addition, BTK rescue in imatinib-resistant cells restored imatinib sensitivity. The presence of the BTK p.(Glu567Arg) variant increased cell numbers (57%) and proliferation (37%) under imatinib exposure. These data demonstrate that BTK is important for the development of imatinib resistance in CML: Its presence increased drug response, while its absence promotes imatinib resistance. Moreover, the BTK p.(Glu567Arg) variant abrogates imatinib sensitivity. These findings demonstrate a context-dependent role for BTK as an oncogene in B cell malignancies, but as a tumor suppressor in other neoplasms.

4.
Am J Hum Genet ; 111(2): 338-349, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228144

RESUMO

Clinical exome and genome sequencing have revolutionized the understanding of human disease genetics. Yet many genes remain functionally uncharacterized, complicating the establishment of causal disease links for genetic variants. While several scoring methods have been devised to prioritize these candidate genes, these methods fall short of capturing the expression heterogeneity across cell subpopulations within tissues. Here, we introduce single-cell tissue-specific gene prioritization using machine learning (STIGMA), an approach that leverages single-cell RNA-seq (scRNA-seq) data to prioritize candidate genes associated with rare congenital diseases. STIGMA prioritizes genes by learning the temporal dynamics of gene expression across cell types during healthy organogenesis. To assess the efficacy of our framework, we applied STIGMA to mouse limb and human fetal heart scRNA-seq datasets. In a cohort of individuals with congenital limb malformation, STIGMA prioritized 469 variants in 345 genes, with UBA2 as a notable example. For congenital heart defects, we detected 34 genes harboring nonsynonymous de novo variants (nsDNVs) in two or more individuals from a set of 7,958 individuals, including the ortholog of Prdm1, which is associated with hypoplastic left ventricle and hypoplastic aortic arch. Overall, our findings demonstrate that STIGMA effectively prioritizes tissue-specific candidate genes by utilizing single-cell transcriptome data. The ability to capture the heterogeneity of gene expression across cell populations makes STIGMA a powerful tool for the discovery of disease-associated genes and facilitates the identification of causal variants underlying human genetic disorders.


Assuntos
Cardiopatias Congênitas , Transcriptoma , Humanos , Animais , Camundongos , Exoma/genética , Cardiopatias Congênitas/genética , Sequenciamento do Exoma , Aprendizado de Máquina , Análise de Célula Única/métodos , Enzimas Ativadoras de Ubiquitina/genética
5.
Sci Rep ; 14(1): 640, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182610

RESUMO

Thyroid hormones (THs) are important regulators of systemic energy metabolism. In the liver, they stimulate lipid and cholesterol turnover and increase systemic energy bioavailability. It is still unknown how the TH state interacts with the circadian clock, another important regulator of energy metabolism. We addressed this question using a mouse model of hypothyroidism and performed circadian analyses. Low TH levels decreased locomotor activity, food intake, and body temperature mostly in the active phase. Concurrently, liver transcriptome profiling showed only subtle effects compared to elevated TH conditions. Comparative circadian transcriptome profiling revealed alterations in mesor, amplitude, and phase of transcript levels in the livers of low-TH mice. Genes associated with cholesterol uptake, biosynthesis, and bile acid secretion showed reduced mesor. Increased and decreased cholesterol levels in the serum and liver were identified, respectively. Combining data from low- and high-TH conditions allowed the identification of 516 genes with mesor changes as molecular markers of the liver TH state. We explored these genes and created an expression panel that assesses liver TH state in a time-of-day dependent manner. Our findings suggest that the liver has a low TH action under physiological conditions. Circadian profiling reveals genes as potential markers of liver TH state.


Assuntos
Fígado , Transcriptoma , Masculino , Animais , Ritmo Circadiano/genética , Hormônios Tireóideos , Colesterol
7.
Front Oncol ; 13: 1200897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384296

RESUMO

Introduction: Resistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed. Methods: Here, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing. Results: In this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment. Discussion: Our data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance.

8.
Pharmacol Res ; 185: 106510, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252775

RESUMO

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with limited therapeutic options. Besides surgery, chemotherapy using temozolomide, carmustine or lomustine is the main pillar of therapy. However, therapy success is limited and prognosis still is very poor. One restraining factor is drug resistance caused by drug transporters of the ATP-binding cassette family, e.g. ABCB1 and ABCG2, located at the blood-brain barrier and on tumor cells. The active efflux of xenobiotics including drugs, e.g. temozolomide, leads to low intracellular drug concentrations and subsequently insufficient anti-tumor effects. Nevertheless, the role of efflux transporters in GBM is controversially discussed. In the present study, we analyzed the role of ABCB1 and ABCG2 in GBM cells showing that ABCB1, but marginally ABCG2, is relevant. Applying a CRISPR/Cas9-derived ABCB1 knockout, the response to temozolomide was significantly augmented demonstrated by decreased cell number (p < 0.001) and proliferation rate (p = 0.04), while apoptosis was increased (p = 0.04). For carmustine, a decrease of cells in G1-phase was detected pointing to cell cycle arrest in the ABCB1 knockout (p = 0.006). For lomustine, however, loss of ABCB1 did not alter the response to the treatment. Overall, this study shows that ABCB1 is involved in the active transport of temozolomide out of the tumor cells diminishing the response to temozolomide. Interestingly, loss of ABCB1 also affected the response to the lipophilic drug carmustine. These findings show that ABCB1 is not only relevant at the blood-brain barrier, but also in the tumor cells diminishing success of chemotherapy.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Carmustina/farmacologia , Carmustina/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Lomustina/uso terapêutico , Lomustina/farmacologia , Sistemas CRISPR-Cas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
9.
Elife ; 112022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35894384

RESUMO

Diurnal (i.e., 24 hr) physiological rhythms depend on transcriptional programs controlled by a set of circadian clock genes/proteins. Systemic factors like humoral and neuronal signals, oscillations in body temperature, and food intake align physiological circadian rhythms with external time. Thyroid hormones (THs) are major regulators of circadian clock target processes such as energy metabolism, but little is known about how fluctuations in TH levels affect the circadian coordination of tissue physiology. In this study, a high triiodothyronine (T3) state was induced in mice by supplementing T3 in the drinking water, which affected body temperature, and oxygen consumption in a time-of-day-dependent manner. A 24-hr transcriptome profiling of liver tissue identified 37 robustly and time independently T3-associated transcripts as potential TH state markers in the liver. Such genes participated in xenobiotic transport, lipid and xenobiotic metabolism. We also identified 10-15% of the liver transcriptome as rhythmic in control and T3 groups, but only 4% of the liver transcriptome (1033 genes) were rhythmic across both conditions - amongst these, several core clock genes. In-depth rhythm analyses showed that most changes in transcript rhythms were related to mesor (50%), followed by amplitude (10%), and phase (10%). Gene set enrichment analysis revealed TH state-dependent reorganization of metabolic processes such as lipid and glucose metabolism. At high T3 levels, we observed weakening or loss of rhythmicity for transcripts associated with glucose and fatty acid metabolism, suggesting increased hepatic energy turnover. In summary, we provide evidence that tonic changes in T3 levels restructure the diurnal liver metabolic transcriptome independent of local molecular circadian clocks.


Many environmental conditions, including light and temperature, vary with a daily rhythm that affects how animals interact with their surroundings. Indeed, most species have developed so-called circadian clocks: internal molecular timers that cycle approximately every 24 hours and regulate many bodily functions, including digestion, energy metabolism and sleep. The energy metabolism of the liver ­ the chemical reactions that occur in the organ to produce energy from nutrients ­ is controlled both by the circadian clock system, and by the hormones produced by a gland in the neck called the thyroid. However, the interaction between these two regulators is poorly understood. To address this question, de Assis, Harder et al. elevated the levels of thyroid hormones in mice by adding these hormones to their drinking water. Studying these mice showed that, although thyroid hormone levels were good indicators of how much energy mice burn in a day, they do not reflect daily fluctuations in metabolic rate faithfully. Additionally, de Assis, Harder et al. showed that elevating T3, the active form of thyroid hormone, led to a rewiring of the daily rhythms at which genes were turned on and off in the liver, affecting the daily timing of processes including fat and cholesterol metabolism. This occurred without changing the circadian clock of the liver directly. De Assis, Harder et al.'s results indicate that time-of-day critically affects the action of thyroid hormones in the liver. This suggests that patients with hypothyroidism, who produce low levels of thyroid hormones, may benefit from considering time-of-day as a factor in disease diagnosis, therapy and, potentially, prevention. Further data on the rhythmic regulation of thyroid action in humans, including in patients with hypothyroidism, are needed to further develop this approach.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Suplementos Nutricionais , Regulação da Expressão Gênica , Lipídeos , Fígado/metabolismo , Camundongos , Transcriptoma , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo , Xenobióticos/metabolismo
10.
Oncol Rep ; 48(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730629

RESUMO

Although chronic myeloid leukemia (CML) can be effectively treated using BCR­ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR­ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro­CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome­wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1­downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA­mediated FN1­knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki­67 expression (1.5­fold, P=0.04) and increased cell number (1.5­fold, P=0.03). Vice versa, recovery of FN1­expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.


Assuntos
Fibronectinas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adesão Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Metilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/metabolismo , Transdução de Sinais
12.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34433009

RESUMO

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 10/química , Variações do Número de Cópias de DNA , Fator 8 de Crescimento de Fibroblasto/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Adolescente , Alelos , Animais , Sistemas CRISPR-Cas , Pré-Escolar , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 10/metabolismo , Elementos Facilitadores Genéticos , Família , Feminino , Fêmur/anormalidades , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Edição de Genes , Heterozigoto , Humanos , Lactente , Deformidades Congênitas das Extremidades Inferiores/diagnóstico por imagem , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Deformidades Congênitas das Extremidades Inferiores/patologia , Masculino , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo
13.
Exp Hematol ; 99: 54-64.e7, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090970

RESUMO

The mRNA-destabilizing proteins ZFP36L1 and ZFP36L2 are described as mediators of quiescence and play a pivotal role in hematopoietic malignancies. Both genes are mainly classified as tumor suppressor genes as they posttranscriptionally downregulate the expression of oncogenes and contribute to cellular quiescence. Here, we analyzed the role of ZFP36L1 and ZFP36L2 in chronic myeloid leukemia (CML). We found ZFP36L1 and ZFP36L2 expression to be deregulated in patients with CML. By use of in vitro models of tyrosine kinase inhibitor resistance, an increase in ZFP36L1 and ZFP36L2 expression was detected during the development of imatinib resistance. CRISPR/Cas9-derived knockout of ZFP36L1, but not of ZFP36L2, in imatinib-sensitive cells led to decreased proliferation rates in response to tyrosine kinase inhibitor treatment. This effect was also observed in untreated ZFP36L1 knockout cells, albeit to a lower extent. Genomewide gene expression analyses of ZFP36L1 knockout cells revealed differential expression of cell cycle regulators, in particular upregulation of the cell cycle inhibitor CDKN1A. In addition, the 3' untranslated region of CDKN1A was proven to be a direct target of ZFP36L1. This indicates that tumor suppressor genes can also be targeted by ZFP36L1. Hence, ZFP36L1 cannot unambiguously be regarded as a tumor suppressor gene.


Assuntos
Fator 1 de Resposta a Butirato , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Regulação Leucêmica da Expressão Gênica , Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Adulto , Idoso , Idoso de 80 Anos ou mais , Fator 1 de Resposta a Butirato/biossíntese , Fator 1 de Resposta a Butirato/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Pessoa de Meia-Idade
14.
Leuk Lymphoma ; 62(9): 2120-2129, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34165048

RESUMO

Breast and ovary have been described as rare but typical sites of presentation of Burkitt lymphoma (BL) in females, particularly after puberty. We revised a historic series of 44 lymphomas of the breast or the ovary in women diagnosed between 1973 and 2014 as BL. Fluorescence in situ hybridization (FISH) was applied to all, and array-based copy number analysis as well as expression profiling to a subset of those cases. Of the 42 cases evaluable for FISH, 19 cases showed an IG-MYC translocation but only 9 of those fulfilled the criteria of the current WHO classification for the diagnosis of BL. Those nine cases resembled BL of other sites with regard to molecular features. Our findings along with literature data suggest that breast and ovarian BL (1) seem to be rarer than hitherto assumed, (2) share typical molecular features with other BL, and (3) predominantly affect women in the fertile age.


Assuntos
Linfoma de Burkitt , Linfoma Difuso de Grandes Células B , Linfoma , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfoma/genética , Linfoma Difuso de Grandes Células B/genética , Ovário , Translocação Genética
15.
Virchows Arch ; 479(1): 133-145, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33528622

RESUMO

Chromosomal breakpoints involving the MYC gene locus, frequently referred to as MYC rearrangements (MYC - R+), are a diagnostic hallmark of Burkitt lymphoma and recurrent in many other subtypes of B-cell lymphomas including follicular lymphoma, diffuse large B-cell lymphoma and other high-grade B-cell lymphomas and are associated with an aggressive clinical course. In remarkable contrast, in MCL, only few MYC - R+ cases have yet been described. In the current study, we have retrospectively analysed 16 samples (MYC - R+, n = 15, MYC - R-, n = 1) from 13 patients and describe their morphological, immunophenotypic and (molecular) genetic features and clonal evolution patterns. Thirteen out of fifteen MYC - R+ samples showed a non-classical cytology including pleomorphic (centroblastic, immunoblastic), anaplastic or blastoid. MYC translocation partners were IG-loci in 4/11 and non-IG loci in 7/11 analysed cases. The involved IG-loci included IGH in 3 cases and IGL in one case. PAX5 was the non-IG partner in 2/7 patients. The MYC - R+ MCL reported herein frequently displayed characteristics associated with an aggressive clinical course including high genomic-complexity (6/7 samples), frequent deletions involving the CDKN2A locus (7/10 samples), high Ki-67 proliferation index (12/13 samples) and frequent P53 expression (13/13 samples). Of note, in 4/14 samples, SOX11 was not or only focally expressed and 3/13 samples showed focal or diffuse TdT-positivity presenting a diagnostic challenge as these features could point to a differential diagnosis of diffuse large B-cell lymphoma and/or lymphoblastic lymphoma/leukaemia.


Assuntos
Biomarcadores Tumorais/genética , Pontos de Quebra do Cromossomo , Ciclina D1/genética , Rearranjo Gênico , Linfoma de Célula do Manto/genética , Proteínas Proto-Oncogênicas c-myc/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Pré-Escolar , Evolução Clonal , Hibridização Genômica Comparativa , Análise Citogenética , DNA Nucleotidilexotransferase/análise , Diagnóstico Diferencial , Feminino , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Fenótipo , Valor Preditivo dos Testes
16.
J Med Case Rep ; 14(1): 245, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339535

RESUMO

BACKGROUND: Whereas lymphoma of the female breast is already rare, lymphoma of the male breast has only anecdotally been reported. Within a study of 32 lymphoma of the breast reported between 1973 and 2014 as Burkitt lymphoma, we observed a single male case, which we report here. CASE PRESENTATION: A 72-years-old Caucasian man presented with a mass in his left breast. Clinical history included prior basal cell carcinoma, leiomyosarcoma, and administration of spironolactone. The reference pathology diagnosis at presentation was Burkitt lymphoma according to the Kiel Classification. The present re-investigation using fluorescence in situ hybridization revealed an IGH-MYC translocation and a break in the BCL2 locus in the tumor cells. Thus, in light of the current WHO classification, the diagnosis was revised to high-grade B-cell lymphoma with MYC and BCL2 rearrangement, Burkitt morphology (so-called "double-hit" lymphoma). Genome-wide chromosomal imbalance mapping revealed a complex pattern of aberrations in line with this diagnosis. The aberrations, including copy-number gains in chromosomes 3q and 18 and focal homozygous loss in 9p21.3, resembled typical changes of lymphomas affecting "immune-privileged" sites. CONCLUSION: The present case adds to the understanding of the pathogenesis of male breast lymphomas, about which hardly any molecular characterization has been published yet.


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Idoso , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética
17.
Mol Pharmacol ; 97(2): 112-122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757862

RESUMO

ATP-binding cassette (ABC) transporters represent a large group of efflux pumps that are strongly involved in the pharmacokinetics of various drugs and nutrient distribution. It was recently shown that micro-RNAs (miRNAs) may significantly alter their expression as proven, e.g., for miR-379 and ABCC2 However, alternative mRNA polyadenylation may result in expression of 3'-untranslated regions (3'-UTRs) with varying lengths. Thus, length variants may result in presence or absence of miRNA binding sites for regulatory miRNAs with consequences on posttranscriptional control. In the present study, we report on 3'-UTR variants of ABCC1, ABCC2, and ABCC3 mRNA. Applying in vitro luciferase reporter gene assays, we show that expression of short ABCC2 3'-UTR variants leads to a significant loss of miR-379/ABCC2 interaction and subsequent upregulation of ABCC2 expression. Furthermore, we show that expression of ABCC2 3'-UTR lengths varies significantly between human healthy tissues but is not directly correlated to the respective protein level in vivo. In conclusion, the presence of altered 3'-UTR lengths in ABC transporters could lead to functional consequences regarding posttranscriptional gene expression, potentially regulated by alternative polyadenylation. Hence, 3'-UTR length variability may be considered as a further mechanism contributing to variability of ABCC transporter expression and subsequent drug variation in drug response. SIGNIFICANCE STATEMENT: micro-RNA (miRNA) binding to 3'-untranslated region (3'-UTR) plays an important role in the control of ATP-binding cassette (ABC)-transporter mRNA degradation and translation into proteins. We disclosed various 3'-UTR length variants of ABCC1, C2, and C3 mRNA, with loss of mRNA seed regions partly leading to varying and tissue-dependent interaction with miRNAs, as proven by reporter gene assays. Alternative 3'-UTR lengths may contribute to variable ABCC transporter expression and potentially explains inconsistent findings in miRNA studies.


Assuntos
MicroRNAs/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Células CACO-2 , Colo/metabolismo , Feminino , Vesícula Biliar/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Poliadenilação
18.
Genet Med ; 21(12): 2723-2733, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31239556

RESUMO

PURPOSE: Pathogenic variants in the chromatin organizer CTCF were previously reported in seven individuals with a neurodevelopmental disorder (NDD). METHODS: Through international collaboration we collected data from 39 subjects with variants in CTCF. We performed transcriptome analysis on RNA from blood samples and utilized Drosophila melanogaster to investigate the impact of Ctcf dosage alteration on nervous system development and function. RESULTS: The individuals in our cohort carried 2 deletions, 8 likely gene-disruptive, 2 splice-site, and 20 different missense variants, most of them de novo. Two cases were familial. The associated phenotype was of variable severity extending from mild developmental delay or normal IQ to severe intellectual disability. Feeding difficulties and behavioral abnormalities were common, and variable other findings including growth restriction and cardiac defects were observed. RNA-sequencing in five individuals identified 3828 deregulated genes enriched for known NDD genes and biological processes such as transcriptional regulation. Ctcf dosage alteration in Drosophila resulted in impaired gross neurological functioning and learning and memory deficits. CONCLUSION: We significantly broaden the mutational and clinical spectrum ofCTCF-associated NDDs. Our data shed light onto the functional role of CTCF by identifying deregulated genes and show that Ctcf alterations result in nervous system defects in Drosophila.


Assuntos
Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Transtornos do Neurodesenvolvimento/genética , Animais , Criança , Cromatina/genética , Cromatina/metabolismo , Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Humanos , Deficiência Intelectual/genética , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma/métodos , Adulto Jovem
19.
Blood ; 133(9): 962-966, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30567752

RESUMO

The new recently described provisional lymphoma category Burkitt-like lymphoma with 11q aberration comprises cases similar to Burkitt lymphoma (BL) on morphological, immunophenotypic and gene-expression levels but lacking the IG-MYC translocation. They are characterized by a peculiar imbalance pattern on chromosome 11, but the landscape of mutations is not yet described. Thus, we investigated 15 MYC-negative Burkitt-like lymphoma with 11q aberration (mnBLL,11q,) cases by copy-number analysis and whole-exome sequencing. We refined the regions of 11q imbalance and identified the INO80 complex-associated gene NFRKB as a positional candidate in 11q24.3. Next to recurrent gains in 12q13.11-q24.32 and 7q34-qter as well as losses in 13q32.3-q34, we identified 47 genes recurrently affected by protein-changing mutations (each ≥3 of 15 cases). Strikingly, we did not detect recurrent mutations in genes of the ID3-TCF3 axis or the SWI/SNF complex that are frequently altered in BL, or in genes frequently mutated in germinal center-derived B-cell lymphomas like KMT2D or CREBBP An exception is GNA13, which was mutated in 7 of 15 cases. We conclude that the genomic landscape of mnBLL,11q, differs from that of BL both at the chromosomal and mutational levels. Our findings implicate that mnBLL,11q, is a lymphoma category distinct from BL at the molecular level.


Assuntos
Biomarcadores Tumorais/genética , Linfoma de Burkitt/classificação , Linfoma de Burkitt/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 11/genética , Mutação , ATPases Associadas a Diversas Atividades Celulares , Adolescente , Adulto , Linfoma de Burkitt/patologia , Criança , Pré-Escolar , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Estudos Retrospectivos , Adulto Jovem
20.
Blood ; 132(21): 2280-2285, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30282799

RESUMO

The WHO Classification of Tumours of Haematopoietic and Lymphoid Tissue notes instances of Burkitt lymphoma/leukemia (BL) with IG-MYC rearrangement displaying a B-cell precursor immunophenotype (termed herein "preBLL"). To characterize the molecular pathogenesis of preBLL, we investigated 13 preBLL cases (including 1 cell line), of which 12 were analyzable using genome, exome, and targeted sequencing, imbalance mapping, and DNA methylation profiling. In 5 patients with reads across the IG-MYC breakpoint junctions, we found evidence that the translocation derived from an aberrant VDJ recombination, as is typical for IG translocations arising in B-cell precursors. Genomic changes like biallelic IGH translocations or VDJ rearrangements combined with translocation into the VDJ region on the second allele, potentially preventing expression of a productive immunoglobulin, were detected in 6 of 13 cases. We did not detect mutations in genes frequently altered in BL, but instead found activating NRAS and/or KRAS mutations in 7 of 12 preBLLs. Gains on 1q, recurrent in BL and preB lymphoblastic leukemia/lymphoma (pB-ALL/LBL), were detected in 7 of 12 preBLLs. DNA methylation profiling showed preBLL to cluster with precursor B cells and pB-ALL/LBL, but apart from BL. We conclude that preBLL genetically and epigenetically resembles pB-ALL/LBL rather than BL. Therefore, we propose that preBLL be considered as a pB-ALL/LBL with recurrent genetic abnormalities.


Assuntos
Linfoma de Burkitt/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Células Precursoras de Linfócitos B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Recombinação V(D)J , Adolescente , Adulto , Idoso , Linfoma de Burkitt/diagnóstico , Linfoma de Burkitt/patologia , Criança , Pré-Escolar , Metilação de DNA , Feminino , Rearranjo Gênico do Linfócito B , Humanos , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Células Precursoras de Linfócitos B/metabolismo , Estudos Retrospectivos , Translocação Genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...