Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 29(7): e13419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949209

RESUMO

Substance use disorders (SUDs) are seen as a continuum ranging from goal-directed and hedonic drug use to loss of control over drug intake with aversive consequences for mental and physical health and social functioning. The main goals of our interdisciplinary German collaborative research centre on Losing and Regaining Control over Drug Intake (ReCoDe) are (i) to study triggers (drug cues, stressors, drug priming) and modifying factors (age, gender, physical activity, cognitive functions, childhood adversity, social factors, such as loneliness and social contact/interaction) that longitudinally modulate the trajectories of losing and regaining control over drug consumption under real-life conditions. (ii) To study underlying behavioural, cognitive and neurobiological mechanisms of disease trajectories and drug-related behaviours and (iii) to provide non-invasive mechanism-based interventions. These goals are achieved by: (A) using innovative mHealth (mobile health) tools to longitudinally monitor the effects of triggers and modifying factors on drug consumption patterns in real life in a cohort of 900 patients with alcohol use disorder. This approach will be complemented by animal models of addiction with 24/7 automated behavioural monitoring across an entire disease trajectory; i.e. from a naïve state to a drug-taking state to an addiction or resilience-like state. (B) The identification and, if applicable, computational modelling of key molecular, neurobiological and psychological mechanisms (e.g., reduced cognitive flexibility) mediating the effects of such triggers and modifying factors on disease trajectories. (C) Developing and testing non-invasive interventions (e.g., Just-In-Time-Adaptive-Interventions (JITAIs), various non-invasive brain stimulations (NIBS), individualized physical activity) that specifically target the underlying mechanisms for regaining control over drug intake. Here, we will report on the most important results of the first funding period and outline our future research strategy.


Assuntos
Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Alemanha , Comportamento Aditivo , Alcoolismo
2.
Nature ; 604(7907): 635-642, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478233

RESUMO

The prosperity and lifestyle of our society are very much governed by achievements in condensed matter physics, chemistry and materials science, because new products for sectors such as energy, the environment, health, mobility and information technology (IT) rely largely on improved or even new materials. Examples include solid-state lighting, touchscreens, batteries, implants, drug delivery and many more. The enormous amount of research data produced every day in these fields represents a gold mine of the twenty-first century. This gold mine is, however, of little value if these data are not comprehensively characterized and made available. How can we refine this feedstock; that is, turn data into knowledge and value? For this, a FAIR (findable, accessible, interoperable and reusable) data infrastructure is a must. Only then can data be readily shared and explored using data analytics and artificial intelligence (AI) methods. Making data 'findable and AI ready' (a forward-looking interpretation of the acronym) will change the way in which science is carried out today. In this Perspective, we discuss how we can prepare to make this happen for the field of materials science.


Assuntos
Inteligência Artificial , Ciência de Dados
3.
Addict Biol ; 25(2): e12866, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31859437

RESUMO

One of the major risk factors for global death and disability is alcohol, tobacco, and illicit drug use. While there is increasing knowledge with respect to individual factors promoting the initiation and maintenance of substance use disorders (SUDs), disease trajectories involved in losing and regaining control over drug intake (ReCoDe) are still not well described. Our newly formed German Collaborative Research Centre (CRC) on ReCoDe has an interdisciplinary approach funded by the German Research Foundation (DFG) with a 12-year perspective. The main goals of our research consortium are (i) to identify triggers and modifying factors that longitudinally modulate the trajectories of losing and regaining control over drug consumption in real life, (ii) to study underlying behavioral, cognitive, and neurobiological mechanisms, and (iii) to implicate mechanism-based interventions. These goals will be achieved by: (i) using mobile health (m-health) tools to longitudinally monitor the effects of triggers (drug cues, stressors, and priming doses) and modify factors (eg, age, gender, physical activity, and cognitive control) on drug consumption patterns in real-life conditions and in animal models of addiction; (ii) the identification and computational modeling of key mechanisms mediating the effects of such triggers and modifying factors on goal-directed, habitual, and compulsive aspects of behavior from human studies and animal models; and (iii) developing and testing interventions that specifically target the underlying mechanisms for regaining control over drug intake.


Assuntos
Terapia Comportamental/métodos , Pesquisa Biomédica/métodos , Sinais (Psicologia) , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/terapia , Telemedicina/métodos , Animais , Comportamento Cooperativo , Modelos Animais de Doenças , Alemanha , Humanos , Recidiva , Transtornos Relacionados ao Uso de Substâncias/psicologia
4.
Biomed Res Int ; 2014: 624024, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25032219

RESUMO

Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly.


Assuntos
Bases de Dados de Proteínas , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular/métodos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química
5.
J Chem Theory Comput ; 10(6): 2232-45, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580747

RESUMO

The MoSGrid portal offers an approach to carry out high-quality molecular simulations on distributed compute infrastructures to scientists with all kinds of background and experience levels. A user-friendly Web interface guarantees the ease-of-use of modern chemical simulation applications well established in the field. The usage of well-defined workflows annotated with metadata largely improves the reproducibility of simulations in the sense of good lab practice. The MoSGrid science gateway supports applications in the domains quantum chemistry (QC), molecular dynamics (MD), and docking. This paper presents the open-source MoSGrid architecture as well as lessons learned from its design.

6.
Nature ; 464(7286): 243-9, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20190736

RESUMO

Endocytosis is a complex process fulfilling many cellular and developmental functions. Understanding how it is regulated and integrated with other cellular processes requires a comprehensive analysis of its molecular constituents and general design principles. Here, we developed a new strategy to phenotypically profile the human genome with respect to transferrin (TF) and epidermal growth factor (EGF) endocytosis by combining RNA interference, automated high-resolution confocal microscopy, quantitative multiparametric image analysis and high-performance computing. We identified several novel components of endocytic trafficking, including genes implicated in human diseases. We found that signalling pathways such as Wnt, integrin/cell adhesion, transforming growth factor (TGF)-beta and Notch regulate the endocytic system, and identified new genes involved in cargo sorting to a subset of signalling endosomes. A systems analysis by Bayesian networks further showed that the number, size, concentration of cargo and intracellular position of endosomes are not determined randomly but are subject to specific regulation, thus uncovering novel properties of the endocytic system.


Assuntos
Endocitose/fisiologia , Perfilação da Expressão Gênica/métodos , Processamento de Imagem Assistida por Computador , Metodologias Computacionais , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Redes e Vias Metabólicas/fisiologia , Microscopia Confocal , Fenótipo , Transporte Proteico/fisiologia , Interferência de RNA , Transdução de Sinais/fisiologia , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...