Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101661, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38384389

RESUMO

After a meal, excess nutrients are stored within adipose tissue as triglycerides in lipid droplets. Previous genome-wide RNAi screens in Drosophila cells have identified mRNA splicing factors as being important for lipid droplet formation. Our lab has previously shown that a class of mRNA splicing factors called serine/arginine-rich (SR) proteins, which help to identify intron/exon borders, are important for triglyceride storage in Drosophila fat tissue, partially by regulating the splicing of the gene for carnitine palmitoyltransferase 1 (CPT1), an enzyme important for mitochondrial ß-oxidation of fatty acids. The CPT1 gene in Drosophila generates two major isoforms, with transcripts that include exon 6A producing more active enzymes than ones made from transcripts containing exon 6B; however, whether nutrient availability regulates CPT1 splicing in fly fat tissue is not known. During ad libitum feeding, control flies produce more CPT1 transcripts containing exon 6B while fasting for 24 h results in a shift in CPT1 splicing to generate more transcripts containing exon 6A. The SR protein 9G8 is necessary for regulating nutrient responsive CPT1 splicing as decreasing 9G8 levels in fly fat tissue blocks the accumulation of CPT1 transcripts including exon 6A during starvation. Protein kinase A (PKA), a mediator of starvation-induced lipid breakdown, also regulates CPT1 splicing during starvation as transcripts including exon 6A did not accumulate when PKA was inhibited during starvation. Together, these results indicate that CPT1 splicing in adipose tissue responds to changes in nutrient availability contributing to the overall control of lipid homeostasis.

2.
Biochem Biophys Res Commun ; 649: 10-15, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738578

RESUMO

The survival of animals during periods of limited nutrients is dependent on the organism's ability to store lipids during times of nutrient abundance. However, the increased availability of food in modern western society has led to an excess storage of lipids resulting in metabolic diseases. To better understand the genes involved in regulating lipid storage, genome-wide RNAi screens were performed in cultured Drosophila cells and one group of genes identified includes mRNA splicing factor genes. Our lab has previously shown that a group of splicing factors important for intron/exon border recognition known as SR proteins are involved in controlling lipid storage in Drosophila; however, how these SR proteins are regulated to control lipid storage is not fully understood. Here, we focus on two SR protein kinases (SRPKs) in Drosophila: SRPK and SRPK79D. Decreasing the expression of these genes specifically in the adult fat body using RNAi resulted in lower levels of triglycerides and this is due to a decrease in the amount of fat stored per cell, despite having more fat cells, when compared to control flies. Decreasing SRPK and SRPK79D levels in the fat body leads to altered splicing of the ß-oxidation gene, carnitine palmitoyltransferase 1 (CPT1), resulting in increased production of a more active enzyme, which would increase lipid breakdown and be consistent with the lean phenotype observed in these flies. In addition, flies with decreased SRPK and SRPK79D levels in their fat bodies eat less, which may also contribute to the decreased triglyceride phenotype. Together, these findings provide evidence to support that lipid storage is controlled by the phosphorylation of factors involved in mRNA splicing.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Proteínas Quinases/metabolismo , Triglicerídeos/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
Biochem Biophys Res Commun ; 620: 92-97, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780586

RESUMO

Excess nutrients are stored as triglycerides, mostly as lipid droplets found in adipose tissue. Previous studies have characterized a group of splicing factors called serine/arginine rich (SR) proteins that function to identify intron/exon borders in regulating metabolic homeostasis in the Drosophila fat body. Decreasing the function of one SR protein, 9G8, causes an increase in triglyceride storage; however, the full complement of genes regulated by 9G8 to control metabolism is unknown. To address this question, we performed RNA sequencing on Drosophila fat bodies with 9G8 levels reduced by RNAi. Differential expression and differential exon usage analyses revealed several genes involved in the immune response, xenobiotic biology, protein translation, sleep, and lipid and carbohydrate metabolism whose expression or splicing is altered in 9G8-RNAi fat bodies. One gene that was both downregulated and had altered splicing in 9G8-RNAi fat bodies was Zwischenferment (Zw), the Drosophila homolog of human glucose 6-phosphate dehydrogenase (G6PD). G6PD regulates flux of glucose 6-phosphate (G6P) into the pentose phosphate pathway, which generates NADPH, a coenzyme for lipid synthesis. Interestingly, the other NADPH-producing enzyme genes in Drosophila (phosphogluconate dehydrogenase, isocitrate dehydrogenase and malic enzyme) were also decreased in 9G8-RNAi flies. Together, these findings suggest that 9G8 regulates several classes of genes and may regulate NADPH-producing enzyme genes to maintain metabolic homeostasis.


Assuntos
Drosophila , Lipídeos , Fatores de Processamento de Serina-Arginina/metabolismo , Animais , Drosophila/metabolismo , Glucose , Glucosefosfato Desidrogenase/metabolismo , Humanos , NADP/metabolismo , Fosfatos/metabolismo , Fatores de Processamento de RNA/metabolismo
4.
Biochem Biophys Res Commun ; 596: 1-5, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35104661

RESUMO

After a meal, excess nutrients are stored within adipose tissue as triglycerides in structures called lipid droplets. Previous genome-wide RNAi screens have identified that mRNA splicing factor genes are required for normal lipid droplet formation in Drosophila cells. We have previously shown that mRNA splicing factors called serine/arginine-rich (SR) proteins are important for triglyceride storage in the Drosophila fat body. SR proteins shuttle in and out of the nucleus with the help of proteins called Transportins (Tnpo-SR); however, whether this transport is important for SR protein-mediated regulation of lipid storage is unknown. The purpose of this study is to characterize the role of Tnpo-SR proteins in regulating lipid storage in the Drosophila fat body. Decreasing Tnpo-SR in the adult fat body resulted in an increase in triglyceride storage and consistent with this phenotype, Tnpo-SR-RNAi flies also have increased starvation resistance. In addition, the lipid accumulation in Tnpo-SR-RNAi flies is the result of increased triglyceride stored in each fat body cell and not due to increased food consumption. Interestingly, the splicing of CPT1, an enzyme important for the ß-oxidation of fatty acids, is altered in Tnpo-SR-RNAi fat bodies. The isoform that produces the less catalytically active form of CPT1 accumulates in fat bodies where Tnpo-SR levels are decreased, suggesting a decrease in lipid breakdown, potentially causing the excess triglyceride storage observed in these flies. Together, these data suggest that the transport of splicing proteins in and out of the nucleus is important for proper triglyceride storage in the Drosophila fat body.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Metabolismo dos Lipídeos , beta Carioferinas/metabolismo , Animais , Animais Geneticamente Modificados , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Corpo Adiposo/citologia , Feminino , Glicogênio/metabolismo , Gotículas Lipídicas/metabolismo , Interferência de RNA , Splicing de RNA , Inanição/genética , Inanição/metabolismo , Triglicerídeos/metabolismo , beta Carioferinas/genética
5.
Biochem Biophys Res Commun ; 516(3): 928-933, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31277943

RESUMO

In Western societies where food is abundant, these excess nutrients are stored as fats mainly in adipose tissue. Fats are stored in structures known as lipid droplets, and a genome-wide screen performed in Drosophila cells has identified several genes that are important for the formation of these droplets. One group of genes found during this screen included those that regulate mRNA splicing. Previous work from our lab has identified some splicing factors that play a role in regulating fat storage; however, the full complement of splicing proteins that regulate lipid metabolism is still unknown. In this study, the levels of a number of serine-arginine (SR) domain containing splicing factors (RSF1, RBP1, RBP1-like, SF2 and Srp-54) were decreased using RNAi in the adult fat body to assess their role in the control of Drosophila metabolism. Decreasing SF2 and RBP1 showed increased triglycerides, while inducing RNAi towards RSF1, RBP1-Like and Srp-54 had no effect on triglycerides. Interestingly, the increased triglyceride phenotype in the SF2-RNAi flies was due to an increase in the amount of fat stored per cell while the RBP1-RNAi flies have more fat cells. In addition, the splicing of the ß-oxidation enzyme, CPT1, was altered in the SF2-RNAi flies potentially promoting the increased triglycerides in these animals. Together, this study identifies novel splicing factors responsible for the regulation of lipid storage in the Drosophila fat body and contributes to our understanding of the mechanisms, which influence the regulation of fat storage in adipose-like cells.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Fatores de Processamento de RNA/genética , Tecido Adiposo/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Longevidade/genética , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Triglicerídeos/metabolismo
6.
Biochem Biophys Res Commun ; 495(1): 1528-1533, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203241

RESUMO

Excess nutrients are stored as triglycerides mainly in the adipose tissue of an animal and these triglycerides are located in structures called lipid droplets. Previous genome-wide RNAi screens in Drosophila cells identified splicing factors as playing a role in lipid droplet formation. Our lab has recently identified the SR protein, 9G8, as an important factor in fat storage as decreasing its levels results in augmented triglyceride storage in the fat body. Previous in vitro studies have implicated 9G8 in the regulation of splicing of the sex determination gene doublesex (dsx) by binding to transformer (tra) and transformer2 (tra2); however, any function of these sex determination proteins in regulating metabolism is unknown. In this study, we have uncovered a role of tra2 to regulate fat storage in vivo. Inducing tra2dsRNA in the adult fat body resulted in an increase in triglyceride levels but had no effect on glycogen storage. Consistent with the triglyceride phenotype, tra2 knockdown flies lived longer under starvation conditions. In addition, this increase in triglycerides is due to more fat storage per cell and not an increase in the number of fat cells. Interestingly, the splicing of CPT1, an enzyme involved in the breakdown of lipids, was altered in flies with decreased tra2. The less-catalytically active isoform of CPT1 accumulated in tra2dsRNA flies suggesting a decrease in lipid breakdown, which is consistent with the increased triglyceride levels observed in these flies. Together, these results suggest a link between mRNA splicing, sex determination and lipid metabolism and may provide insight into the mechanisms underlying tissue-specific splicing and nutrient storage.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica/fisiologia , Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Animais
7.
CBE Life Sci Educ ; 13(4): 711-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452493

RESUMO

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


Assuntos
Genômica/educação , Currículo , Modelos Educacionais , Desenvolvimento de Programas , Estados Unidos , Universidades
8.
Biochem Biophys Res Commun ; 443(2): 672-6, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24333419

RESUMO

The storage of lipids is an evolutionarily conserved process that is important for the survival of organisms during shifts in nutrient availability. Triglycerides are stored in lipid droplets, but the mechanisms of how lipids are stored in these structures are poorly understood. Previous in vitro RNAi screens have implicated several components of the spliceosome in controlling lipid droplet formation and storage, but the in vivo relevance of these phenotypes is unclear. In this study, we identify specific members of the splicing machinery that are necessary for normal triglyceride storage in the Drosophila fat body. Decreasing the expression of the splicing factors U1-70K, U2AF38, U2AF50 in the fat body resulted in decreased triglyceride levels. Interestingly, while decreasing the SR protein 9G8 in the larval fat body yielded a similar triglyceride phenotype, its knockdown in the adult fat body resulted in a substantial increase in lipid stores. This increase in fat storage is due in part to altered splicing of the gene for the ß-oxidation enzyme CPT1, producing an isoform with less enzymatic activity. Together, these data indicate a role for mRNA splicing in regulating lipid storage in Drosophila and provide a link between the regulation of gene expression and lipid homeostasis.


Assuntos
Tecido Adiposo/fisiologia , Animais Geneticamente Modificados/genética , Drosophila/genética , Metabolismo dos Lipídeos/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais
9.
PLoS Genet ; 6(3): e1000872, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20221253

RESUMO

Alternative splicing controls the expression of many genes, including the Drosophila sex determination gene Sex-lethal (Sxl). Sxl expression is controlled via a negative regulatory mechanism where inclusion of the translation-terminating male exon is blocked in females. Previous studies have shown that the mechanism leading to exon skipping is autoregulatory and requires the SXL protein to antagonize exon inclusion by interacting with core spliceosomal proteins, including the U1 snRNP protein Sans-fille (SNF). In studies begun by screening for proteins that interact with SNF, we identified PPS, a previously uncharacterized protein, as a novel component of the machinery required for Sxl male exon skipping. PPS encodes a large protein with four signature motifs, PHD, BRK, TFS2M, and SPOC, typically found in proteins involved in transcription. We demonstrate that PPS has a direct role in Sxl male exon skipping by showing first that loss of function mutations have phenotypes indicative of Sxl misregulation and second that the PPS protein forms a complex with SXL and the unspliced Sxl RNA. In addition, we mapped the recruitment of PPS, SXL, and SNF along the Sxl gene using chromatin immunoprecipitation (ChIP), which revealed that, like many other splicing factors, these proteins bind their RNA targets while in close proximity to the DNA. Interestingly, while SNF and SXL are specifically recruited to their predicted binding sites, PPS has a distinct pattern of accumulation along the Sxl gene, associating with a region that includes, but is not limited to, the SxlPm promoter. Together, these data indicate that PPS is different from other splicing factors involved in male-exon skipping and suggest, for the first time, a functional link between transcription and SXL-mediated alternative splicing. Loss of zygotic PPS function, however, is lethal to both sexes, indicating that its role may be of broad significance.


Assuntos
Processamento Alternativo/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Feminino , Dosagem de Genes , Genes Essenciais , Masculino , Mutação/genética , Proteínas Nucleares/genética , Ovário/citologia , Ovário/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
10.
CBE Life Sci Educ ; 9(1): 55-69, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20194808

RESUMO

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Assuntos
Pesquisa em Genética , Genômica/educação , Laboratórios , Universidades , Animais , Docentes , Estudantes/psicologia
11.
Genetics ; 168(4): 2059-65, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15611175

RESUMO

The conserved spliceosomal U1-70K protein is thought to play a key role in RNA splicing by linking the U1 snRNP particle to regulatory RNA-binding proteins. Although these protein interactions are mediated by repeating units rich in arginines and serines (RS domains) in vitro, tests of this domain's importance in intact multicellular organisms have not been carried out. Here we report a comprehensive genetic analysis of U1-70K function in Drosophila. Consistent with the idea that U1-70K is an essential splicing factor, we find that loss of U1-70K function results in lethality during embryogenesis. Surprisingly, and contrary to the current view of U1-70K function, animals carrying a mutant U1-70K protein lacking the arginine-rich domain, which includes two embedded sets of RS dipeptide repeats, have no discernible mutant phenotype. Through double-mutant studies, however, we show that the U1-70K RS domain deletion no longer supports viability when combined with a viable mutation in another U1 snRNP component. Together our studies demonstrate that while the protein interactions mediated by the U1-70K RS domain are not essential for viability, they nevertheless contribute to an essential U1 snRNP function.


Assuntos
Arginina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Arginina/genética , Drosophila/genética , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética
12.
Development ; 130(3): 463-71, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12490553

RESUMO

Alternative splicing of the Sex-lethal pre-mRNA has long served as a model example of a regulated splicing event, yet the mechanism by which the female-specific SEX-LETHAL RNA-binding protein prevents inclusion of the translation-terminating male exon is not understood. Thus far, the only general splicing factor for which there is in vivo evidence for a regulatory role in the pathway leading to male-exon skipping is sans-fille (snf), a protein component of the spliceosomal U1 and U2 snRNPs. Its role, however, has remained enigmatic because of questions about whether SNF acts as part of an intact snRNP or a free protein. We provide evidence that SEX-LETHAL interacts with SANS-FILLE in the context of the U1 snRNP, through the characterization of a point mutation that interferes with both assembly into the U1 snRNP and complex formation with SEX-LETHAL. Moreover, we find that SEX-LETHAL associates with other integral U1 snRNP components, and we provide genetic evidence to support the biological relevance of these physical interactions. Similar genetic and biochemical approaches also link SEX-LETHAL with the heterodimeric splicing factor, U2AF. These studies point specifically to a mechanism by which SEX-LETHAL represses splicing by interacting with these key splicing factors at both ends of the regulated male exon. Moreover, because U2AF and the U1 snRNP are only associated transiently with the pre-mRNA during the course of spliceosome assembly, our studies are difficult to reconcile with the current model that proposes that the SEX-LETHAL blocks splicing at the second catalytic step, and instead argue that the SEX-LETHAL protein acts after splice site recognition, but before catalysis begins.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Nucleares , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/embriologia , Éxons , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Homeostase , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Mutação Puntual , Ribonucleoproteína Nuclear Pequena U1/genética , Homologia de Sequência de Aminoácidos , Diferenciação Sexual/genética , Diferenciação Sexual/fisiologia , Fator de Processamento U2AF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...