Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(13): 10382-10391, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502117

RESUMO

Activation of human carbonic anhydrase II (hCA II) holds great promise for treating memory loss symptoms associated with Alzheimer's disease. Despite its importance, the activation mechanism of hCA II has been largely overlooked in favor of the well-studied inhibition mechanism. To address this unexplored realm, we use first-principles calculations to tease out the activation mechanism of hCA II using 2-(2-aminoethyl)-pyridine (2-2AEPy), a promising in vitro activator. We explored both stepwise and concerted mechanisms via both available nitrogen sites of 2-2AEPy: (i) aminoethyl group (Nα) and (ii) pyridine ring (Nß). Our results show that a concerted mechanism via Nα holds the key to hCA II activation. The activation process of the concerted mechanism exhibits the characteristics of an exergonic reaction, wherein the transition state resembles the reactant with a notably low imaginary frequency of 452.4i cm-1 and barrier height of 5.2 kcal mol-1. Such meager transition barriers propel the activation of hCA II at in vivo temperatures. These findings initiate future research into hCA II activation mechanisms and the development of efficient activators, which may lead to promising therapeutic interventions for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anidrases Carbônicas , Humanos , Anidrase Carbônica II , Anidrases Carbônicas/metabolismo , Piridinas , Relação Estrutura-Atividade , Estrutura Molecular
2.
Phys Chem Chem Phys ; 25(13): 9617-9625, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36943102

RESUMO

Hosts of 2D materials exist, yet few allow compositional and structural tailoring as the MQ2 (M = Mo, W; Q = S, Se) family does, for which various structural superlattices have been synthesized. Using thorough first-principles calculations, we show how bonding hierarchy contributes to the structural resilience of 2D PdPQ and allows for full-range alloying of sulfur and selenium. Within the structural unit of Pd2P2Q2, the covalently-bonded [P2Q2]4- polyanions hold the structure together with their molecular-like P-P bonds while ionically bonded Pd-Qs allow the S/Se substitution. Here, the bonding hierarchy imparts superior electronic and structural features to the PdPQ monolayers. As such, the flat-and-dispersive valence band and the eight degenerate valleys of the conduction band benefit the p-type and n-type thermoelectricity of pristine PdPQ, which can be further enhanced by alloying. The high-entropy alloying synergistically suppresses the lattice heat transport from 75 to 30 W m-1 K-1 and increases the band degeneracy of PdPQ monolayers, resulting in an overall improvement in zT. Combining these features, in a naïve approach, results in a large zT approaching two for both p-type and n-type doping. However, accurate fully-fledged electron-phonon calculations rebut this promise, showing that at high temperatures, the increased electron scattering results in a stagnant power factor in the flat-and-dispersive valence band. Using a realistic first-principles scattering, we finally calculate the thermoelectric efficiency of PdPQ (Q = S, Se) and highlight the importance of an accurate estimation of electron relaxation time for thermoelectric predictions.

3.
Phys Chem Chem Phys ; 24(25): 15579-15587, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723234

RESUMO

Research interest in chemical gas detection has been directed towards developing highly selective bio-inspired and eco-friendly materials that allow the integration of sensors in daily human life, such as the Internet of Things (IoT). In this regard, chemical sensors for detecting air pollutants are urgently needed for environmental safety. For instance, acute exposure to the colorless nitrogen oxide (NO)-as an anthropogenic gas-causes several diseases such as methemoglobinemia, emphysema, and bronchiolitis, to name just three. In the present work, to find materials for sensing the dilute amount of NO, we use the density functional non-equilibrium Green's function formalism to thoroughly screen the bio-inspired metalloporphyrin (MPor) based junctions. The detailed analysis of adsorption energy, sensitivity, recovery time, and selectivity reveals that the nature of the central M, mainly its orbitals' energy ordering, affects the overall performance of MPors for sensor applications. We find that the the CrPor-based device is sensitive (≈0.85%) and also selective, in comparison with other pollutants like CO and CO2, toward NO detection. The contaminated sensor then can be recovered within 0.25 s at a small bias voltage of 0.5 V. The bio-inspired CrPor molecules are thus promising materials for designing superior NO nanoscale chemical sensors. Our computational approach provides a basis for the future optimization and development of gas nanosensors awaiting further experimental validations.


Assuntos
Poluentes Ambientais , Metaloporfirinas , Adsorção , Humanos , Óxidos de Nitrogênio
4.
Phys Chem Chem Phys ; 24(24): 14866-14876, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35611660

RESUMO

The development of cost-effective and eco-friendly sensor materials is needed to realize the application of detectors in daily life-such as in the internet of things. In this regard, monitoring air pollutants such as carbon monoxide (CO) and carbon dioxide (CO2), mainly emitted by anthropogenic sources from daily human activities, is of great importance. In particular, developing a susceptible and portable CO2 sensor raises a dilemma because of the chemical inertness and non-polarity of CO2 molecules. We find that porphyrin-based materials, exploited by nature in biological systems, are a playground to search for such sensor materials. Using density functional non-equilibrium Green's function formalism, we fully screen all 3d metalloporphyrin (MPor) based devices to find efficient CO and CO2 gas sensors. Our detailed analysis of the adsorption energy, molecular orbitals, transmission spectra, sensitivity, and recovery time reveals that the nature of central M alters the efficiency of MPor gas detectors. We find that CO and CO2 can be monitored using, respectively, CoPor- and TiPor-based devices. The estimated sensitivity is around 100%, along with a fast recovery time at very low bias voltages (V ≥ 0.5 V), which turn metalloporphyrins into promising candidates for the widespread development of enhanced CO and CO2 sensors awaiting further experimental validations.


Assuntos
Poluentes Atmosféricos , Metaloporfirinas , Adsorção , Dióxido de Carbono/química , Monóxido de Carbono/química , Humanos , Metaloporfirinas/química
5.
ACS Appl Mater Interfaces ; 13(12): 14189-14197, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33734673

RESUMO

The search for new thermoelectric materials that directly convert (waste) heat into electricity is a high-cost and time-consuming experimental effort. To facilitate this process, we perform a systematic screening for synthesizable and stable ABQ3 (A and B are metals; Q = S, Se) compounds using first-principles density functional theory calculations. A total of 40 ABQ3 compounds are predicted to be highly competent thermoelectric materials with nontoxic and earth-abundant advantages. The calculated power factors of some of them (e.g., n-type SnHfS3, p-type SbGaS3, n-type PbHfS3, and so forth) are comparable (even outperform) those of the well-known thermoelectric materials such as PbTe and Bi2Te3. The detailed analysis of electronic band structure reveals that either one or a combination of "pudding-mold" type band structure, high valley degeneracy, and high orbital degeneracy is responsible for the high PF computed in this family of materials. Taking two representative cases, we validate a low lattice thermal conductivity in ABQ3 compounds by calculating the Boltzmann transport equation using the highly accurate anharmonic lattice dynamics methods. Third-order interatomic force constants reveal that the anharmonicity and soft phonon modes, rooted in the nature of unconventional chemical bonds between the B-site metals and chalcogen atoms, lead to an ultralow lattice thermal conductivity in this family of materials. The combination of intrinsically low lattice thermal conductivity and high power factor has realized highly efficient n-type and p-type ABQ3 thermoelectric materials showing various anisotropic characteristics. Considering the thermal and moisture stability of chalcogenide perovskites, our results suggest that this unexplored family of materials is a host of highly efficient and practical thermoelectric materials awaiting further experimental validation.

6.
ACS Appl Mater Interfaces ; 12(19): 21521-21527, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320199

RESUMO

A large entropy of reduction is crucial in achieving materials capable of high-efficiency solar thermochemical hydrogen (STCH) production through two-step thermochemical water splitting cycles. We have recently demonstrated that the onsite electronic entropy of reduction attains an extreme value of 4.26 kB at 1500 K in Ce4+ → Ce3+ redox reactions, which explains the high performance and uniqueness of CeO2 as an archetypal STCH material. However, ceria requires high temperatures (T > 1500 °C) to achieve a reasonable reduction extent because of its large reduction enthalpy, which is a major obstacle in practical applications. Therefore, new materials with a large entropy of reduction and lower reduction enthalpy are required. Here, we perform a systematic screening to search for Ce4+-based oxides which possess thermodynamics superior to CeO2 for STCH production. We first search the Inorganic Crystal Structure Database (ICSD) and literature for Ce4+-based oxides and subsequently use density functional theory to compute their reduction enthalpies (i.e., oxygen vacancy formation energies). We find that CeTi2O6 with the brannerite structure is the most promising candidate for STCH because it possesses three essential characteristics of an STCH material: (i) a smaller reduction enthalpy compared to ceria yet large enough to split water, (ii) a high thermal stability, as reported experimentally, and (iii) a large entropy of reduction associated with Ce4+ → Ce3+ redox. Our proposed design strategy suggests that further exploration of Ce4+ oxides for STCH production is warranted.

7.
ACS Appl Mater Interfaces ; 11(50): 46688-46695, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31755251

RESUMO

An efficient approach to improve the thermoelectric performance of materials is to converge their electronic bands, which is known as band engineering. In this regard, lots of effort has been made to further improve the thermoelectric efficiency of bulk and exfoliated monolayers of Bi2Te3 and Sb2Te3. However, ultrahigh band degeneracy and thus significant improvement of the power factor have not yet been realized in these materials. Using first-principles methods, we demonstrate that the valley degeneracy of Bi2Te3 and Sb2Te3 can be largely improved upon substitution of the middle-layer Te atoms with the more electronegative S or Se atoms. Our detailed analysis reveals that in this family of materials, two out of four possible valence band valleys merely depend on the electronegativity of the middle-layer chalcogen atoms, which makes the independent modulation of the valleys' position feasible. As such, band alignment of Bi2Te3 and Sb2Te3 largely improves upon substitution of the middle-layer Te atoms with more electronegative, yet chemically similar, S and Se ones. A superior valence band alignment is attained in Sb2Te2Se monolayers where three out of four possible valleys are well aligned, resulting in a giant band degeneracy of 18 that holds the record among all thermoelectric materials. As a result, an outstanding power factor for the hole-doped monolayers is achieved, indicating a highly efficient p-type thermoelectric material.

8.
Nat Commun ; 10(1): 719, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755609

RESUMO

High-efficiency thermoelectric materials require simultaneously high power factors and low thermal conductivities. Aligning band extrema to achieve high band degeneracy, as realized in PbTe, is one of the most efficient approaches to enhance power factor. However, this approach usually relies on band structure engineering, e.g., via chemical doping or strain. By employing first-principles methods with explicit computation of phonon and carrier lifetimes, here we show two full-Heusler compounds Li2TlBi and Li2InBi have exceptionally high power factors and low lattice thermal conductivities at room temperature. The expanded rock-salt sublattice of these compounds shifts the valence band maximum to the middle of the Σ line, increasing the band degeneracy by a factor of three. Meanwhile, resonant bonding in the PbTe-like sublattice and soft Tl-Bi (In-Bi) bonding interaction is responsible for intrinsic low lattice thermal conductivities. Our results present an alternative strategy of designing high performance thermoelectric materials.

9.
J Phys Chem A ; 122(27): 5870-5877, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29921128

RESUMO

Over the past decade, tremendous effort has been made to improve the light-harvesting ability of push-pull porphyrin dyes. Despite notable success achieved in this direction, push-pull porphyrin dyes still suffer from a poor light-harvesting efficiency owing to the lack of absorption between the Soret and Q-bands. To tackle this issue, here we design a series of push-pull porphyrin dyes with anchoring groups either at meso- or ß-position using calculations based on first-principles time-dependent density functional theory. In contrast to the common perception, we find that porphyrin dyes bearing an electron-donor at the meso-position and an electron-acceptor at the ß-position produce an additional extended band between the Soret and Q-bands appearing at around 500 nm due to S0 → S3 excitation, leading to a much higher light-harvesting performances compared to meso- and ß-disubstituted ones. In addition, changing the π-conjugated linker at the acceptor site from ethylene linker (C═C) to acetylene linker (C≡C) further improves the light-harvesting ability of meso-ß-porphyrin dyes, making them promising candidates for dye-sensitized solar cell application.

10.
Nat Commun ; 8(1): 285, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28819153

RESUMO

Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce4+/Ce3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.


Assuntos
Cério/química , Entropia , Óxidos/química , Água/química , Algoritmos , Elétrons , Modelos Químicos , Oxirredução , Oxigênio/química , Térbio/química
11.
Chem Sci ; 8(3): 2226-2234, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507678

RESUMO

The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur-hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe-Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa, FeBi2 and FeBi3. According to our predictions, FeBi2 is a metal at the border of magnetism with a conventional electron-phonon mediated superconducting transition temperature of Tc = 1.3 K at 40 GPa.

12.
Phys Rev Lett ; 117(4): 046602, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494488

RESUMO

Semiconducting half and, to a lesser extent, full Heusler compounds are promising thermoelectric materials due to their compelling electronic properties with large power factors. However, intrinsically high thermal conductivity resulting in a limited thermoelectric efficiency has so far impeded their widespread use in practical applications. Here, we report the computational discovery of a class of hitherto unknown stable semiconducting full Heusler compounds with ten valence electrons (X_{2}YZ, X=Ca, Sr, and Ba; Y=Au and Hg; Z=Sn, Pb, As, Sb, and Bi) through high-throughput ab initio screening. These new compounds exhibit ultralow lattice thermal conductivity κ_{L} close to the theoretical minimum due to strong anharmonic rattling of the heavy noble metals, while preserving high power factors, thus resulting in excellent phonon-glass electron-crystal materials.

13.
J Phys Condens Matter ; 24(4): 046001, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22214567

RESUMO

Within the huge family of Heusler compounds only a few quaternary derivatives are known that crystallize in the F43m space group. In this work, the yet unreported compounds CoRhMnZ (Z = Ga, Sn, Sb) and the alloy Co(0.5)Rh(1.5)MnSb were investigated in detail by experimental techniques and theoretical methods. The ab initio calculations predict the CoRhMnZ compounds to be half-metallic ferromagnets or to be close to the half-metallic ferromagnetic state. Calculations of the elastic constants show that the cubic structure is stable in compounds containing Mn. Both calculations and experiment reveal that Mn cannot be exchanged by Fe (CoRhFeGa). The low temperature magnetization of the compounds is in the range of 3.4-5.5 µ(B) depending on the composition. The best agreement between experiment and calculation has been achieved for CoRhMnSn (5 µ(B)). The other compounds are also cubic but tend to anti-site disorder. Compared to Co(2)MnSn it is interesting to note that the magnetic properties and half-metallicity are preserved when replacing one of the 'magnetic' Co atoms by a 'non-magnetic' Rh atom. This allows us to increase the spin-orbit interaction at one of the lattice sites while keeping the properties as a precondition for applications and physical effects relying on a large spin-orbit interaction. The Curie temperatures were determined from measurements in induction fields of up to 1 T by applying molecular field fits respecting the applied field. The highest Curie temperature was found for CoRhMnSn (620 K) that makes it, together with the other well defined properties, attractive for above room temperature spintronic applications.

14.
J Phys Condens Matter ; 23(20): 205601, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21540504

RESUMO

This study addresses the structural and electronic properties of the NiAs- and MnP-type phases dominating in FeSe at high pressures. The analysis is performed using first-principle band structure calculations within the framework of the B3LYP hybrid exchange-correlation functional. Based on the volume-pressure relation deduced from the available experimental data, we optimize the form and internal coordinates of the unit cell, which agree reasonably well with experiment. In particular, the present calculations resolve the structural NiAs-MnP phase transition which occurs at about 10 GPa. Both structures are found to be semiconducting at low pressures and metallizing at about 80-90 GPa. Using the complementary LDA + U approach the semiconducting state can be explained as the result of the strong local correlations within the Fe d-shell.

15.
J Biol Inorg Chem ; 13(1): 121-32, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17955269

RESUMO

Conversion of iron(II) verdoheme to iron(II) biliverdin in the presence of hydroxyl ion as a nucleophile and imidazole, pyridine, water, hydroxyl, cyanide, phenolate, chloride, thiolate and imidazolate as axial ligands was investigated using the B3LYP method and the 6-31G basis set. In the five-coordinated pathway the reactants and products are in the ground triplet state. In this path, hydroxyl ion directly attacks the macrocycle. The exothermic energy for addition of hydroxyl ion to iron(II) verdoheme with various ligands is 169.55, 166.34 and 164 kcal mol(-1) for water, pyridine and imidazole, energies which are around 30-60 kcal mol(-1) more exothermic than those for the other axial ligands used in this study. Therefore, imidazole, water and pyridine axial ligands can facilitate hydrolytic cleavage of iron(II) verdoheme to form open-chained helical iron(II) biliverdin complexes. The activation barrier for the conversion of iron(II) verdoheme hydroxyl species to the iron(II) biliverdin complex is estimated to be 5.2, 4.2, 4.35, 13.76 and 14.05 kcal mol(-1) for imidazole, water, cyanide, thiolate and imidazolate, respectively.


Assuntos
Biliverdina/química , Heme/análogos & derivados , Heme/química , Hidrólise , Modelos Moleculares , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...