Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 305: 114347, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954681

RESUMO

In recent years, assessment of sediment contamination by heavy metals, i.e., arsenic, has attracted the interest of scientists worldwide. The present study provides a new methodology to better understand the factors influencing surface water vulnerability to arsenic pollution by two advanced machine learning algorithms including boosted regression trees (BRT) and random forest (RF). Based on the sediment quality guidelines (Effects range low) polluted and non-polluted arsenic sediment samples were defined with concentrations >8 ppm and <8 ppm, respectively. Different conditioning factors such as topographical, lithology, erosion, hydrological, and anthropogenic factors were acquired to model surface waters' vulnerability to arsenic. We trained and validated the models using 70 and 30% of both polluted and non-polluted samples, respectively, and generated surface vulnerability maps. To verify the maps to arsenic pollution, the receiver operating characteristics (ROC) curve was implemented. The results approved the acceptable performance of the RF and BRT algorithms with an area under ROC values of 85% and 75.6%, respectively. Further, the findings showed higher importance of precipitation, slope aspect, distance from residential areas, and slope length in arsenic pollution in the modeling process. Erosion, lithology, and land use maps were introduced as the least important factors. The introduced methodology can be used to define the most vulnerable areas to arsenic pollution in advance and implement proper remediation actions to reduce the damages.


Assuntos
Arsênio , Algoritmos , Efeitos Antropogênicos , Arsênio/análise , Monitoramento Ambiental , Humanos , Aprendizado de Máquina
2.
Sci Rep ; 10(1): 12937, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737384

RESUMO

Floods in urban environments often result in loss of life and destruction of property, with many negative socio-economic effects. However, the application of most flood prediction models still remains challenging due to data scarcity. This creates a need to develop novel hybridized models based on historical urban flood events, using, e.g., metaheuristic optimization algorithms and wavelet analysis. The hybridized models examined in this study (Wavelet-SVR-Bat and Wavelet-SVR-GWO), designed as intelligent systems, consist of a support vector regression (SVR), integrated with a combination of wavelet transform and metaheuristic optimization algorithms, including the grey wolf optimizer (GWO), and the bat optimizer (Bat). The efficiency of the novel hybridized and standalone SVR models for spatial modeling of urban flood inundation was evaluated using different cutoff-dependent and cutoff-independent evaluation criteria, including area under the receiver operating characteristic curve (AUC), Accuracy (A), Matthews Correlation Coefficient (MCC), Misclassification Rate (MR), and F-score. The results demonstrated that both hybridized models had very high performance (Wavelet-SVR-GWO: AUC = 0.981, A = 0.92, MCC = 0.86, MR = 0.07; Wavelet-SVR-Bat: AUC = 0.972, A = 0.88, MCC = 0.76, MR = 0.11) compared with the standalone SVR (AUC = 0.917, A = 0.85, MCC = 0.7, MR = 0.15). Therefore, these hybridized models are a promising, cost-effective method for spatial modeling of urban flood susceptibility and for providing in-depth insights to guide flood preparedness and emergency response services.

3.
Sci Total Environ ; 699: 134230, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522053

RESUMO

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.

4.
Sci Total Environ ; 672: 239-252, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959291

RESUMO

Land subsidence (LS) is among the most critical environmental problems, affecting both agricultural sustainability and urban infrastructure. Existing methods often use either simple regression models or complex hydraulic models to explain and predict LS. There are few studies that identify the risk factors and predict the risk of LS using machine learning models. This study compares four tree-based machine learning models for land subsidence hazard modelling at a study area in Hamadan plain (Iran). The study also analyzes the importance of six risk factors including topography (elevation, slope), geomorphology (distance from stream, drainage density), hydrology (groundwater drawdown) and lithology on LS. Thematic layers of each variable related to the LS phenomenon are prepared and utilized as the inputs to the four tree-based machine learning models, including the Rule-Based Decision Tree (RBDT), Boosted Regression Trees (BRT), Classification And Regression Tree (CART), and the Random Forest (RF) algorithms to produce a consolidated LS hazard map. The accuracy of the generated maps is then evaluated using the area under the receiver operating characteristic curve (AUC) and the True Skill Statistics (TSS). The RF approach had the lowest predictive error for mapping the LS hazard (i.e., AUC 96.7% for training, AUC 93.8% for validation, TSS 0.912 for training, TSS 0.904 for validation) followed by BRT. Groundwater drawdown was seen to be the most influential factor that contributed to land subsidence in the present study area, followed by lithology and distance from the stream network.

5.
Environ Monit Assess ; 191(4): 248, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30919064

RESUMO

Groundwater resources are facing a high pressure due to drought and overexploitation. The main aim of this research is to apply rotation forest (RTF) with decision trees as base classifiers and an improved ensemble methodology based on evidential belief function and tree-based models (EBFTM) for preparing groundwater potential maps (GPM). The performance of these new models is then compared with three previously implemented models, i.e., boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). For this purpose, spring locations in the Meshgin Shahr in Iran were detected. The spring locations were randomly categorized into training (70% of the locations) and validation (30% of the locations) datasets. Furthermore, several groundwater conditioning factors (GCFs) such as hydrogeological, topographical, and land use factors were mapped and regarded as input variables. The tree-based algorithms (i.e., BRT, CART, RF, and RTF) were applied by implementing the input variables and training dataset. The groundwater potential values (i.e., spring occurrence probability) obtained by the BRT, CART, RF, and RTF models for all the pixels of the study area were classified into four potential classes and then used as inputs of the EBF model to construct the new ensemble model (i.e., EBFTM). At last, this paper implemented a receiver operating characteristics (ROC) curve for determining the efficiency of the EBFTM, RTF, BRT, CART, and RF methods. The findings illustrated that the EBFTM had the highest efficacy with an area under the ROC curve (AUC) of 90.4%, followed by the RF, BRT, CART, and RTF models with AUC-ROC values of 90.1, 89.8, 86.9, and 86.2%, respectively. Thus, it could be inferred that the ensemble approach is capable of improving the efficacy of the single tree-based models in GPM production.


Assuntos
Algoritmos , Árvores de Decisões , Monitoramento Ambiental/métodos , Água Subterrânea , Área Sob a Curva , Irã (Geográfico) , Curva ROC , Análise de Regressão , Análise Espacial
6.
Environ Monit Assess ; 190(3): 149, 2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29455381

RESUMO

Ever increasing demand for water resources for different purposes makes it essential to have better understanding and knowledge about water resources. As known, groundwater resources are one of the main water resources especially in countries with arid climatic condition. Thus, this study seeks to provide groundwater potential maps (GPMs) employing new algorithms. Accordingly, this study aims to validate the performance of C5.0, random forest (RF), and multivariate adaptive regression splines (MARS) algorithms for generating GPMs in the eastern part of Mashhad Plain, Iran. For this purpose, a dataset was produced consisting of spring locations as indicator and groundwater-conditioning factors (GCFs) as input. In this research, 13 GCFs were selected including altitude, slope aspect, slope angle, plan curvature, profile curvature, topographic wetness index (TWI), slope length, distance from rivers and faults, rivers and faults density, land use, and lithology. The mentioned dataset was divided into two classes of training and validation with 70 and 30% of the springs, respectively. Then, C5.0, RF, and MARS algorithms were employed using R statistical software, and the final values were transformed into GPMs. Finally, two evaluation criteria including Kappa and area under receiver operating characteristics curve (AUC-ROC) were calculated. According to the findings of this research, MARS had the best performance with AUC-ROC of 84.2%, followed by RF and C5.0 algorithms with AUC-ROC values of 79.7 and 77.3%, respectively. The results indicated that AUC-ROC values for the employed models are more than 70% which shows their acceptable performance. As a conclusion, the produced methodology could be used in other geographical areas. GPMs could be used by water resource managers and related organizations to accelerate and facilitate water resource exploitation.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/análise , Modelos Teóricos , Rios/química , Recursos Hídricos , Algoritmos , Clima Desértico , Sistemas de Informação Geográfica , Irã (Geográfico) , Análise Multivariada , Curva ROC , Análise de Regressão , Recursos Hídricos/provisão & distribuição
7.
Environ Monit Assess ; 188(1): 44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26687087

RESUMO

Groundwater is considered one of the most valuable fresh water resources. The main objective of this study was to produce groundwater spring potential maps in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran, using three machine learning models: boosted regression tree (BRT), classification and regression tree (CART), and random forest (RF). Thirteen hydrological-geological-physiographical (HGP) factors that influence locations of springs were considered in this research. These factors include slope degree, slope aspect, altitude, topographic wetness index (TWI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Subsequently, groundwater spring potential was modeled and mapped using CART, RF, and BRT algorithms. The predicted results from the three models were validated using the receiver operating characteristics curve (ROC). From 864 springs identified, 605 (≈70 %) locations were used for the spring potential mapping, while the remaining 259 (≈30 %) springs were used for the model validation. The area under the curve (AUC) for the BRT model was calculated as 0.8103 and for CART and RF the AUC were 0.7870 and 0.7119, respectively. Therefore, it was concluded that the BRT model produced the best prediction results while predicting locations of springs followed by CART and RF models, respectively. Geospatially integrated BRT, CART, and RF methods proved to be useful in generating the spring potential map (SPM) with reasonable accuracy.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Subterrânea/análise , Aprendizado de Máquina , Modelos Estatísticos , Árvores de Decisões , Geologia , Irã (Geográfico) , Modelos Teóricos , Curva ROC , Rios , Recursos Hídricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...