Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(11): 110604, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242716

RESUMO

We use a near quantum limited detector to experimentally track individual quantum state trajectories of a driven qubit formed by the hybridization of a waveguide cavity and a transmon circuit. For each measured quantum coherent trajectory, we separately identify energy changes of the qubit as heat and work, and verify the first law of thermodynamics for an open quantum system. We further establish the consistency of these results by comparison with the master equation approach and the two-projective-measurement scheme, both for open and closed dynamics, with the help of a quantum feedback loop that compensates for the exchanged heat and effectively isolates the qubit.

2.
Phys Rev Lett ; 123(2): 020502, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386500

RESUMO

In both thermodynamics and quantum mechanics, the arrow of time is characterized by the statistical likelihood of physical processes. We characterize this arrow of time for the continuous quantum measurement dynamics of a superconducting qubit. By experimentally tracking individual weak measurement trajectories, we compare the path probabilities of forward and backward-in-time evolution to develop an arrow of time statistic associated with measurement dynamics. We compare the statistics of individual trajectories to ensemble properties showing that the measurement dynamics obeys both detailed and integral fluctuation theorems, thus establishing the consistency between microscopic and macroscopic measurement dynamics.

3.
Phys Rev Lett ; 121(3): 030604, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085766

RESUMO

We use continuous weak measurements of a driven superconducting qubit to experimentally study the information dynamics of a quantum Maxwell's demon. We show how information gained by a demon who can track single quantum trajectories of the qubit can be converted into work using quantum coherent feedback. We verify the validity of a quantum fluctuation theorem with feedback by utilizing information obtained along single trajectories. We demonstrate, in particular, that quantum backaction can lead to a loss of information in imperfect measurements. We furthermore probe the transition between information gain and loss by varying the initial purity of the qubit.

4.
Phys Rev Lett ; 119(18): 180801, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219606

RESUMO

Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

5.
Nat Commun ; 7: 11527, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27167893

RESUMO

The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.

6.
Phys Rev Lett ; 116(11): 110401, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035288

RESUMO

In quantum physics, measurements give random results and yield a corresponding random backaction on the state of the system subject to measurement. If a quantum system is probed continuously over time, its state evolves along a stochastic quantum trajectory. To investigate the characteristic properties of such dynamics, we perform weak continuous measurements on a superconducting qubit that is driven to undergo Rabi oscillations. From the data we observe a number of striking temporal correlations within the time dependent signals and the quantum trajectories of the qubit, and we discuss their explanation in terms of quantum measurement and photodetection theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...