Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494638

RESUMO

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

2.
Nat Mater ; 22(1): 36-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36396962

RESUMO

The honeycomb magnet α-RuCl3 has attracted considerable interest because it is proximate to the Kitaev Hamiltonian whose excitations are Majoranas and vortices. The thermal Hall conductivity κxy of Majorana fermions is predicted to be half-quantized. Half-quantization of κxy/T (T, temperature) was recently reported, but this observation has proven difficult to reproduce. Here, we report detailed measurements of κxy on α-RuCl3 with the magnetic field B ∥ a (zigzag axis). In our experiment, κxy/T is observed to be strongly temperature dependent between 0.5 and 10 K. We show that its temperature profile matches the distinct form expected for topological bosonic modes in a Chern-insulator-like model. Our analysis yields magnon band energies in agreement with spectroscopic experiments. At high B, the spin excitations evolve into magnon-like modes with a Chern number of ~1. The bosonic character is incompatible with half-quantization of κxy/T.

3.
Nano Lett ; 22(5): 1946-1953, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226804

RESUMO

The ability to create nanometer-scale lateral p-n junctions is essential for the next generation of two-dimensional (2D) devices. Using the charge-transfer heterostructure graphene/α-RuCl3, we realize nanoscale lateral p-n junctions in the vicinity of graphene nanobubbles. Our multipronged experimental approach incorporates scanning tunneling microscopy (STM) and spectroscopy (STS) and scattering-type scanning near-field optical microscopy (s-SNOM) to simultaneously probe the electronic and optical responses of nanobubble p-n junctions. Our STM/STS results reveal that p-n junctions with a band offset of ∼0.6 eV can be achieved with widths of ∼3 nm, giving rise to electric fields of order 108 V/m. Concurrent s-SNOM measurements validate a point-scatterer formalism for modeling the interaction of surface plasmon polaritons (SPPs) with nanobubbles. Ab initio density functional theory (DFT) calculations corroborate our experimental data and reveal the dependence of charge transfer on layer separation. Our study provides experimental and conceptual foundations for generating p-n nanojunctions in 2D materials.

4.
Nano Lett ; 20(12): 8438-8445, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33166145

RESUMO

Nanoscale charge control is a key enabling technology in plasmonics, electronic band structure engineering, and the topology of two-dimensional materials. By exploiting the large electron affinity of α-RuCl3, we are able to visualize and quantify massive charge transfer at graphene/α-RuCl3 interfaces through generation of charge-transfer plasmon polaritons (CPPs). We performed nanoimaging experiments on graphene/α-RuCl3 at both ambient and cryogenic temperatures and discovered robust plasmonic features in otherwise ungated and undoped structures. The CPP wavelength evaluated through several distinct imaging modalities offers a high-fidelity measure of the Fermi energy of the graphene layer: EF = 0.6 eV (n = 2.7 × 1013 cm-2). Our first-principles calculations link the plasmonic response to the work function difference between graphene and α-RuCl3 giving rise to CPPs. Our results provide a novel general strategy for generating nanometer-scale plasmonic interfaces without resorting to external contacts or chemical doping.

5.
J Anal Methods Chem ; 2019: 6164058, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944753

RESUMO

TOF-ND elastic scattering of thermal neutrons offers some important advantages over X-ray diffraction (XRD), X-ray fluorescence (XRF), and metallography for the study of archaeological and numismatic problems. Traditional analytical methods are usually destructive and often probe only the surface. Neutrons deeply penetrate samples, simultaneously giving nondestructive bulk information about the crystal structure, composition, and texture (alignment of crystallites) from which thermomechanical manufacturing processes (e.g., cast, struck, or rolled) may be inferred. An analysis of the metal composition and minting processes used for making ancient Judaean bronze and leaded bronze coins from first century BCE and CE is used as a case study. One of the first ND analyses of the temperature used for striking bronze coins is also presented.

6.
Phys Rev Lett ; 120(11): 117204, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29601734

RESUMO

The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics: beyond a magnetic field of B_{c}≈7.5 T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpected, large energy gap arises, which increases linearly with the magnetic field, reaching remarkable ℏω_{0}/k_{B}≈50 K at 18 T.

7.
Science ; 356(6342): 1055-1059, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596361

RESUMO

The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

8.
Sci Rep ; 4: 5471, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24969218

RESUMO

Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combined ab initio calculations and detailed magnetization dynamics studies reveal the unprecedented relaxation mediated via the second excited state within a new DyNCN system comprising a valence-localized carbon coordinated to a single dysprosium(III) ion. The essentially C2v symmetry of the Dy(III) ion results in a new relaxation mechanism, hitherto unknown for mononuclear Dy(III) complexes, opening new perspectives for means of enhancing the anisotropy contribution to the spin-relaxation barrier.

9.
Sci Rep ; 2: 747, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23087812

RESUMO

We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in "real-world" batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Eletrodos , Grafite/química , Íons/química , Difração de Nêutrons
10.
Proc Natl Acad Sci U S A ; 108(38): 15693-8, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21896723

RESUMO

Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here, we present a comprehensive single-crystal neutron scattering study of CoAl(2)O(4), a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Néel ordering. Below the temperature T(∗) = 6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T(∗) had previously been associated with the onset of glassy behavior. Our new results suggest instead that T(∗) signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.


Assuntos
Óxido de Alumínio/química , Cobalto/química , Magnetismo , Óxidos/química , Algoritmos , Cristalização , Compostos Ferrosos/química , Cinética , Minerais/química , Modelos Químicos , Nêutrons , Transição de Fase , Espalhamento de Radiação , Temperatura , Termodinâmica , Difração de Raios X
11.
Inorg Chem ; 45(19): 7689-97, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-16961360

RESUMO

Catena(dimethylammonium-bis(mu2-chloro)-chlorocuprate), (CH3)2NH2CuCl3, forms chains of Cu2Cl6(2-) bifold dimers linked along the structural chain axis by terminal chlorides forming long semicoordinate bonds to adjacent dimers. The structural chains are separated by dimethylammonium ions that hydrogen bond to chloride ions of the dimers. A structural phase transition below room temperature removes disorder in the hydrogen bonding, leaving adjacent dimers along the chain structurally and magnetically inequivalent, with alternating ferromagnetic and antiferromagnetic pairs. The coupled dimers are magnetically isolated from each other along the structural chain axis by the long semicoordinate Cu-Cl bond. However, the dimers couple to like counterparts on adjacent chains via nonbonding Cl...Cl contacts. The result is two independent magnetic chains, one an alternating antiferromagnetic chain and the other an antiferromagnetic chain of ferromagnetically coupled copper dimers, which run perpendicular to the structural chains. This magnetostructural analysis is used to fit unusual low-temperature (1.6 K) magnetization vs field data that display a two-step saturation. The structural phase transition is identified with neutron scattering and capacitance measurements, and the X-ray crystal structures are determined at room temperature and 84 K. The results appear to resolve long-standing confusion about the origins of the magnetic behavior of this compound and provide a compelling example of the importance of two-halide magnetic exchange.

12.
Nat Mater ; 4(4): 329-34, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15778717

RESUMO

Quantum effects dominate the behaviour of many diverse materials. Of particular current interest are those systems in the vicinity of a quantum critical point (QCP). Their physical properties are predicted to reflect those of the nearby QCP with universal features independent of the microscopic details. The prototypical QCP is the Luttinger liquid (LL), which is of relevance to many quasi-one-dimensional materials. The magnetic material KCuF3 realizes an array of weakly coupled spin chains (or LLs) and thus lies close to but not exactly at the LL quantum critical point. By using inelastic neutron scattering we have collected a complete data set of the magnetic correlations of KCuF3 as a function of momentum, energy and temperature. The LL description is found to be valid over an extensive range of these parameters, and departures from this behaviour at high and low energies and temperatures are identified and explained.


Assuntos
Magnetismo , Física/métodos , Modelos Estatísticos , Nêutrons , Teoria Quântica , Espalhamento de Radiação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...