Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255501

RESUMO

The current article presents an advanced analysis of the properties of solid-wire electric contacts produced with ultrasonic welding and soldering. Soldering is generally used to join thin, solid copper wires to produce electrical contacts in small-volume production, as ultrasonic welding does not provide acceptable peel force and tensile strength due to the deformation and thinning of the wires. In this article, ultrasonic welding of thin, solid copper wires using a ring before and after a thermal shock test is discussed and compared with the standard soldering technique. The thermal shock test was carried out in the temperature range from -30 to 150 °C. Half of the samples, for both the joining techniques and the wires, were subjected to the thermal shock test; the other half were not. Investigations included electrical resistance tests, optical and SEM microscopy, XRD, microhardness measurements, peel tests, tensile tests, and fractographic analysis. The electrical resistance test, microscopy, microhardness measurements, and fracture examinations showed no differences between the thermal shock-exposed and the non-exposed samples with the same joining process. In mechanical tests, the ultrasonic joint demonstrated superior strength compared to the soldered joint.

2.
Materials (Basel) ; 16(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37763519

RESUMO

The present study comprises an investigation involving thermodynamic analysis, microstructural characterisation, and a comparative examination of the solidification sequence in two different aluminium alloys: EN AW 6026 and EN AW 1370. These alloys were modified through the addition of pure indium and a master alloy consisting of indium and bismuth. The aim of this experiment was to evaluate the potential suitability of indium, either alone or in combination with bismuth, as a substitute for toxic lead in free-machining aluminium alloys. Thermodynamic analysis was carried out using Thermo-Calc TCAL-6 software, supplemented by differential scanning calorimetry (DSC) experiments. The microstructure of these modified alloys was characterised using SEM-EDS analysis. The results provide valuable insights into the formation of different phases and eutectics within the alloys studied. The results represent an important contribution to the development of innovative, lead-free aluminium alloys suitable for machining processes, especially for use in automatic CNC cutting machines. One of the most important findings of this research is the promising suitability of indium as a viable alternative to lead. This potential stems from indium's ability to avoid interactions with other alloying elements and its tendency to solidify as homogeneously distributed particles with a low melting point. In contrast, the addition of bismuth does not improve the machinability of magnesium-containing aluminium alloys. This is primarily due to their interaction, which leads to the formation of the Mg3Bi2 phase, which solidifies as a eutectic with a high melting point. Consequently, the presence of bismuth appears to have a detrimental effect on the machining properties of the alloy when magnesium is present in the composition.

3.
Materials (Basel) ; 16(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37241393

RESUMO

This article analyses the as-cast state of practically unknown Fe-P-based cast alloys with or without an addition of carbon and/or boron, cast into a grey cast iron mould. The melting intervals of the alloys were determined by DSC analysis, and the microstructure was characterized by optical and scanning electron microscopy with an EDXS detector. The hardness and microhardness of the alloys were also measured. Their hardness reached values between 52 and 65 HRC depending on chemical composition and microstructure, showing their high abrasion resistance. The high hardness is a consequence of the eutectic and primary intermetallic phases of Fe3P, Fe3C, Fe2B or mixed type. By increasing the concentration of metalloids and combining them, the hardness and brittleness of the alloys were increased. The alloys with predominantly eutectic microstructures were the least brittle. Depending on the chemical composition, the solidus and liquidus temperatures ranged from 954 °C to 1220 °C and were lower than those of the well-known wear-resistant white cast irons.

4.
Materials (Basel) ; 15(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36013731

RESUMO

Medium carbon high-silicon abrasion resistant (AR) steel was examined by performing dilatometry, light optical microscopy (LOM), scanning electron microscopy (SEM), and hardness measurements after isothermal bainitization and modified martempering and compared to direct quenching technology. A commercial thermodynamic tool was used for hardness prediction and compared to the measured one and revealed a rather good agreement for direct quenching, as was the case for isothermal holdings near to the martensite start (Ms). The predicted martensite start temperatures were in good agreement with the experimental data, the experimental value was 321 °C, while the predicted values were 324 and 296 °C. However, a higher discrepancy appeared for isothermal holding much above the martensite transition in the bainite region resulting in lower measured hardness compared to the predictions related to the actual kinetics and complexity of the formed final volume percentages of phase constituents such as bainite, martensite, and rest austenite, later as a part of unfinished bainite transformation at studied temperature. The predicted hardness values for quenching, isothermal holding at 280, 300 and 350 °C were 50.6, 50.6, 49.4 and 49.4 HRC, while the measured values were 53.3, 48.3, 48 and 43 HRC, respectively. A very good agreement between the thermodynamic prediction was achieved by comparing the measured Ms concerning prior austenite grain size as one of the crucial parameters for setting a proper heat treatment strategy of various isothermal quenchings making thermodynamic predictions for low alloyed steels a powerful tool for optimizing the heat-treating operations.

5.
Materials (Basel) ; 14(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34947090

RESUMO

The electrochemical behavior of commercially pure titanium (CP Ti) and Ti-6Al-4V (Grade 5) alloy in phosphate buffered saline solution (PBS, pH = 7.4) at 37 °C (i.e., in simulated physiological solution in the human body) was examined using open circuit potential measurements, linear and potentiodynamic polarization and electrochemical impedance spectroscopy methods. After the impedance measurements and after potentiodynamic polarization measurements, the surface of the samples was investigated by scanning electron microscopy, while the elemental composition of oxide film on the surface of each sample was determined by EDS analysis. The electrochemical and corrosion behavior of CP Ti and Ti-6Al-4V alloys is due to forming a two-layer model of surface oxide film, consisting of a thin barrier-type inner layer and a porous outer layer. The inner barrier layer mainly prevents corrosion of CP Ti and Ti-6Al-4V alloy, whose thickness and resistance increase sharply in the first few days of exposure to PBS solution. With longer exposure times to the PBS solution, the structure of the barrier layer subsequently settles, and its resistance increases further. Compared to Ti-6Al-4V alloy, CP Ti shows greater corrosion stability.

6.
Materials (Basel) ; 14(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947114

RESUMO

The aim of this study was to evaluate the effect of austempering compared to quenching and low-temperature tempering on wear resistance of an as-cast medium carbon high-silicon steel intended for rock breaking. Austempering was done by isothermal holding at 270, 300 and 350 °C in molten salt baths, while quenching was done in water. The austempering treatments resulted in microstructural combinations of bainite and martensite. The isothermal holding at 270 °C resulted in bainite and self-tempered martensite, while isothermal holdings at 300 and 350 °C resulted in bainite and untempered martensite. The two quench and temper treatments resulted in tempered martensite. In general austempering resulted in lower hardness values when compared to quenching and tempering but higher impact toughness. The wear resistance was best for quenching and low temperature tempering, followed by austempering at 270 °C, but at slightly lower hardness and 25% higher impact toughness. The other two austempering treatments resulted in worse wear resistance.

7.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947301

RESUMO

During the die-casting process as well as the hot forming process, the tool is subjected to complex thermal, mechanical, and chemical stresses that can cause various types of damage to different parts of the tool. This study was carried out to determine the resistance of various tool steels, i.e., UTOPMO1, HTCS-130, and W600, in molten Al99.7 aluminum alloy at a temperature of 700 °C. The formation kinetics of the interaction layer between the molten aluminum and tool steels was studied using differential scanning calorimetry. Light and field-emission scanning electron microscopy were used to analyze the thickness and nature of the interaction layers, while thermodynamic calculations using the Thermo-Calc software were used to explain the results. The stability of the HTCS-130 and W600 tool steels is better than the stability of the UTOPMO1 tool steel in the molten Al99.7 aluminum. Two interaction layers were formed, which in all cases indicate an intermetallic Al13Fe4 layer near the aluminum alloy and an intermetallic Al5Fe2 layer near the tool steels, containing small round carbides. It was confirmed that Ni reduces the activity of aluminum in the ferrite matrix and causes a reduction in the thickness of the intermetallic layer.

8.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009362

RESUMO

This article deals with an analysis of mixing and determines the admixing rate of a base S355 steel plate in single-bead surface welds by measuring the chemical composition using a plane-scan energy dispersive X-ray spectroscopy (EDXS) on metallographic cross-sections. The results show that obtaining a larger number of EDXS measurements does not necessarily lead to obtaining a more accurate admixing rate. Due to the ever-present segregations that are generally near the base material, the disadvantage of this method is the subjective influence of the SEM operator on the estimated admixing rate. To obtain relevant results, a sufficiently wide area of well-mixed melt, including segregations, must be analyzed. This study showed that by using a sufficiently large number of appropriately selected sites with a sufficiently large surface area, it is possible to estimate the admixing rate from the chemical composition with an accuracy of ≥96% for the geometrically determined admixing rate D = 30%. From several equations, the best result showed an equation which is the arithmetic mean of the two different arithmetic means and in which the artificial influencing factor of the segregations of the base material is taken into account. With this equation, the same value of admixing rate, D = 30%, was obtained using the comparative geometric method.

9.
Polymers (Basel) ; 12(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023951

RESUMO

A destructive pressure test of styrene-acrylonitrile (SAN) water-filter housings showed the influence of the shape and specific details of the housings on their critical areas and their destructive pressure. The destructive pressure varies by as much as 37 bar due to different dominant stresses in the individual types of housings. In critical areas of the housings, geometrical stress concentrators generally exist. For this reason, the stress caused by the internal pressure is locally 2.75-3.4 times greater than that expected based on the water pressure, which means that cracks are initiated in these places. However, the bottom of the housings can be in a form such that the maximum stress and the crack originates in its central part without the influence of local stress concentrators. The tensile strength of the SAN is theoretically estimated at 73 N/mm2, which is comparable with the literature data. The fracture toughness of the SAN is typically low, theoretically estimated in the range 1.45-3.55 MPa·m1/2, and strongly depends on the degree of the wall's stress-increasing rate or the crack-propagation rate. Therefore, at various crack-propagation rates, the critical crack depths are also different, in the range 100-600 µm. Due to this, the critical thickness for brittle fracture in the SAN is also different; it is ten times greater than the critical crack length. The characteristic of a sub-critical crack, i.e., the mirror zone, is its macroscopically smooth surface, which is microscopically very finely roughened. In the case of a sufficiently slowly growing sub-critical crack, the surface of the mirror zone contains characteristic parabolic markings. The over-critical, sufficiently rapidly growing cracks generally grow mainly in the plane-strain state and only the final thin layer of the remaining wall thickness breaks in the plane-stress state. The over-critical, sufficiently slowly growing cracks grow in the plane-stress state with a strong shear plastic tearing.

10.
Materials (Basel) ; 12(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717407

RESUMO

Magnesium is one of the lightest metals for structural components. It has been used for producing various lightweight cast components, but the application of magnesium sheet plates is less widespread. There are two reasons for this: (i) its poor formability at ambient temperatures; and (ii) insufficient data on its durability, especially for dynamic loading. In this article, an innovative approach to predicting the fatigue life of the AZ31 magnesium alloy is presented. It is based on an energy approach that links the strain-energy density with the fatigue life. The core of the presented methodology is a comprehensive new model for tensile and compressive loading paths, which makes it possible to calculate the strain-energy density of closed hysteresis loops. The model is universal for arbitrary strain amplitudes. The material parameters are determined from several low-cycle fatigue tests. The presented approach was validated with examples of variable strain histories.

11.
Materials (Basel) ; 12(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067788

RESUMO

The precise determination of the admixing rate of the base material for certain welding parameters is very important because of the possible negative consequences. As such, it is the basis for corrections in welding technology. In the article, experimental and theoretical determinations of the admixing rate in single-bead surface welds that were arc welded onto S355 steel with different alloyed-steel-coated electrodes are discussed. The admixing rate was experimentally estimated from the ratio of the surface areas of metallographic cross-sections, from the ratios of the height and from chemical analyses of different regions of the surface weld, while it was theoretically estimated from the characteristics of the welding process and material constants. One of the key characteristics of the welding process is the melting efficiency, which can be estimated by means of different equations and from knowledge of the heat balance of the welding process. Both the average melting efficiency of the surface welding on the medium-thick S355 steel plate and the average admixing rate of the S355 steel into the surface welds have the same value, i.e., approximately 30%. New equations for estimating the melting efficiency of the arc welding with a coated electrode were developed on the basis of the results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...