Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(48)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37651984

RESUMO

We report on the synthesis of ZnO nanoparticles and ZnO hierarchical nanorod structures using four different alcohols i.e. methanol, isopropanol, ethanol, and aqueous ethanol (70% alcohol, 30% water). The syntheses of the nanoparticles were carried out by non-aqueous and hydrothermal routes. In general, absolute alcohol allows a better control of the synthesis reaction and nanoparticles as small as 5 nm were obtained, confirmed by TEM. XPS analysis elucidated the chemical states that were correlated to the synthesis reaction. For the nanorod growth, these four alcohols were used as seeding solvents, followed by hydrothermal ZnO nanorod growth. Here, the seed layer tailored the nanorod diameters and surface defects, which were studied by SEM and photoluminescence spectroscopy. Subsequently, the ZnO nanorods were electrically characterized and exhibited persistent photoconductivity under UV irradiation of 365 nm. The differences in conductivity in dark and under UV irradiation were attributed to the size of the nanorods, defect states, semiconductor band bending and oxygen adsorption-desorption mechanisms. Parameters such as photoresponse and photosensitivity are also calculated in order to evaluate their applicability in UV sensors. This work demonstrates optimization of the physical, chemical, electrical and optical properties of both ZnO nanostructures via the use of alcoholic solvents.

2.
Nanomaterials (Basel) ; 13(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446514

RESUMO

ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal in outdoor conditions. The effect of ZnO defect states, i.e., the presence of zinc and oxygen defects on the photocatalytic activity was probed for two types of dyes: fuchsin and methylene blue. Three morphologies of ZnO nanoparticles were deliberately selected, i.e., spherical, facetted and a mix of spherical and facetted, ascertained via transmission electron microscopy. Aqueous and non-aqueous sol-gel routes were applied to their synthesis in order to tailor their size, morphology and defect states. Raman spectroscopy demonstrated that the spherical nanoparticles contained a high amount of oxygen vacancies and zinc interstitials. Photoluminescence spectroscopy revealed that the facetted nanoparticles harbored zinc vacancies in addition to oxygen vacancies. A mechanism for dye degradation based on the possible surface defects in facetted nanoparticles is proposed in this work. The reusability of these nanoparticles for five cycles of dye degradation was also analyzed. More specifically, facetted ZnO nanoparticles tend to exhibit higher efficiencies and reusability than spherical nanoparticles.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234673

RESUMO

We report on the synthesis of ZnO nanoparticles and their hybrids consisting of carbon nanotubes (CNT) and polystyrene sulfonate (PEDOT:PSS). A non-aqueous sol-gel route along with hydrated and anhydrous acetate precursors were selected for their syntheses. Transmission electron microscopy (TEM) studies revealed their spherical shape with an average size of 5 nm. TEM also confirmed the successful synthesis of ZnO-CNT and ZnO-PEDOT:PSS hybrid nanocomposites. In fact, the choice of precursors has a direct influence on the chemical and optical properties of the ZnO-based nanomaterials. The ZnO nanoparticles prepared with anhydrous acetate precursor contained a high amount of oxygen vacancies, which tend to degrade the polymer macromolecule, as confirmed from X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, a relative increase in hydroxyl functional groups in the ZnO-CNT samples was observed. These functional groups were instrumental in the successful decoration of CNT and in producing the defect-related photoluminescence emission in ZnO-CNT.

4.
Beilstein J Nanotechnol ; 12: 1078-1092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631340

RESUMO

Light-emitting diodes (LED) are widely employed in display applications and lighting systems. Further research on LED that incorporates carbon nanostructures and metal nanoparticles exhibiting surface plasmon resonance has demonstrated a significant improvement in device performance. These devices offer lower turn-on voltages, higher external quantum efficiencies, and luminance. De facto, plasmonic nanoparticles, such as Au and Ag have boosted the luminance of red, green, and blue emissions. When combined with carbon nanostructures they additionally offer new possibilities towards lightweight and flexible devices with better thermal management. This review surveys the diverse possibilities to combine various inorganic, organic, and carbon nanostructures along with plasmonic nanoparticles. Such combinations would allow an enhancement in the overall properties of LED.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...