Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 428: 136746, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421667

RESUMO

Deep-fat frying of food develops lipid oxidation products that deteriorate oil and pose a health risk. This necessitates the development of a rapid and accurate oil quality and safety detection technique. Herein, surface-enhanced Raman spectroscopy (SERS) and sophisticated chemometric techniques were used for rapid and label-free determination of peroxide value (PV) and fatty acid composition of oil in-situ. In the study, plasmon-tuned and biocompatible Ag@Au core-shell nanoparticle-based SERS substrates were used to obtain optimum enhancement despite matrix interference to efficiently detect the oil components. The potent combination of SERS and the Artificial Neural Network (ANN) method could determine the fatty acid profile and PV with upto 99% accuracy. Moreover, the SERS-ANN method could quantify the low level of trans fats, i.e., < 2%, with 97% accuracy. Therefore, the developed algorithm-assisted SERS system enabled the sleek and rapid monitoring and on-site detection of oil oxidation.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Análise Espectral Raman/métodos , Ácidos Graxos , Oxirredução , Algoritmos , Nanopartículas Metálicas/química
2.
J Food Sci Technol ; 59(1): 86-94, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35068554

RESUMO

Deep frying of food is a common practice that leads to the formation of lipid oxidation products. These lipid oxidation products have a role in the Maillard reaction, which ultimately leads to the formation of cancer-causing and neurotoxic substance acrylamide. In this regard, the Psidium guajava leaves extract-treated sunflower oil on oxidative stability and acrylamide content in pooris a popular deep-fried staple food in India were studied and compared with synthetic antioxidant butylated hydroxytoluene (BHT) till four frying cycles. P. guajava leaves contain 173.33 ± 1.95 mg GAE/g extract total phenolic content and 20.43 ± 0.25 mg RUE/g extract total flavonoid content. Some of the phytochemicals in the extract were identified and quantified by HPTLC. P. guajava leaves extract (1 g) contained 0.039 mg gallic acid, 0.196 mg rutin, 0.021 mg naringenin, 0.059 mg ferulic acid. The IC50 values for guava leaves extract, BHT, and ascorbic acid were 61.4, 30.4, 26.6 µg/mL, respectively. The peroxide and p-anisidine values indicated that P. guajava leaves extract inhibited lipid oxidation and provided oxidative stability. Pooris fried in P. guajava leaves extract-treated, BHT treated sunflower oil contained a lower acrylamide than pooris fried in control sunflower oil. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s13197-021-04984-y).

3.
J Food Sci ; 86(12): 5159-5174, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34812504

RESUMO

Trans fats are desired by the edible oil industry as they impart firmness, plasticity, and oxidative stability to oil. However, clinical trials have demonstrated the adverse effects of trans fats in food on human health and nutrition. Regulatory actions have been taken up by government and non-government bodies worldwide to eliminate the presence of trans fats in the food supply. The World Health Organization (WHO) has launched a "REPLACE" action plan to eliminate trans-fat from the global food industry by 2023. A few enabling technologies are developed to mitigate trans fats namely, trait-enhanced oils, modification in the hydrogenation process, interesterification, fractionation, blending, and oleogelation. Some of them have the drawback of replacing trans-fat with saturated fats. Interesterification and oleogelation are in-trend techniques with excellent potential in replacing trans fats without compromising the desired functionality and nutritional quality attributes. This review presents an overview of trans fatty acid for example, its dietary intake in food products, possible adverse health impact, regulations, and approaches to reduce the usage of trans fats for food application. PRACTICAL APPLICATION: The requirement for the replacement of trans fatty acids (TFAs) in food supply globally has challenged the food industry to find a novel substitute for trans fats without compromising the desired functionality and nutritional property. This review presents detailed background on trans fats, their health impacts and current trends of reformulation of oils and fats to mitigate their presence in food supply chains. Information compiled in this paper will help food scientists and technologists, chemists, food processors, and retailers as there is an urgent need to find novel technologies and substitutes to replace trans fats in processed foods.


Assuntos
Ácidos Graxos trans , Ingestão de Alimentos , Ácidos Graxos , Abastecimento de Alimentos , Humanos , Hidrogenação , Ácidos Graxos trans/efeitos adversos
4.
Bioresour Technol ; 339: 125599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303095

RESUMO

L-asparaginase shows great potential as a food enzyme to reduce acrylamide formation in fried and baked products. But for food applications, enzymes must be stable at high temperatures and have higher catalytic efficiency. These desirable characteristics are conferred by the immobilization of enzymes on a suitable matrix. The present study aimed to immobilize the L-asparaginase enzyme on magnetic nanoparticles to reduce acrylamide content in the food system. Immobilized preparations were characterized using SEM, TEM, FTIR, UV-spectrometry, and XRD diffraction analyses. These nanoparticles enhanced the thermal stability of the enzyme up to four-fold at 70 °C compared to the free enzyme. Kinetic parameters exhibited an increase in Vmax, Km, and catalytic efficiency by ~ 38% than the free counterpart. The immobilized preparations were reusable for up to five cycles. Moreover, their application in the pre-treatment coupled with blanching of potato chips led to a significant reduction (greater than 95%) of acrylamide formation.


Assuntos
Asparaginase , Nanopartículas de Magnetita , Acrilamida , Asparaginase/metabolismo , Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...