Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 94(1): 1-28, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11393353

RESUMO

Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150 degrees C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of -10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140 degrees C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.


Assuntos
Compostos de Cálcio , Lignina , Óxidos , Papel , Madeira , Biomassa , Carboidratos/análise , Celulase , Engenharia Química , Conservação de Recursos Energéticos , Fontes Geradoras de Energia , Hidrólise , Oxirredução
2.
Appl Biochem Biotechnol ; 77-79: 609-31, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-15304682

RESUMO

The MixAlco process is a patented technology that converts any biodegradable material (e.g., sorted municipal solid waste, sewage sludge, industrial biosludge, manure, agricultural residues, energy crops) into mixed alcohol fuels containing predominantly 2-propanol, but also higher alcohols up to 7-tridecanol. The feedstock is treated with lime to increase its digestibility. Then, it is fed to a fermentor in which a mixed culture of acid-forming microorganisms produces carboxylic acids. Calcium carbonate is added to the fermentor to neutralize the acids to their corresponding carboxylate salt. The dilute (approximately 3%) carboxylate salts are concentrated to 19% using an amine solvent that selectively extracts water. Drying is completed using multi-effect evaporators. Finally, the dry salts are thermally converted to ketones which subsequently are hydrogenated to alcohols. All the steps in the MixAlco process have been proven at the laboratory scale. A techno-economic model of the process indicates that with the tipping fees available in New York (126 dollars/dry tonne), mixed alcohol fuels may be sold for 0.04 dollars/L (0.16 dollars/gal) with a 60% return on investment (ROI). With the average tipping fee in the United States rates (63 dollars/dry tonne), mixed alcohol fuels may be sold for 0.18 dollars/L (0.69 dollars/gal) with a 15% ROI. In the case of sugarcane bagasse, which may be obtained for about 26 dollars/dry ton, mixed alcohol fuels may be sold for 0.29 dollars/L (1.09 dollars/gal) with a 15% ROI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...