Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 60(8): 1365-1378, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164391

RESUMO

Triglycerides (TGs) are the main energy storage form that accommodates changing organismal energy demands. In Drosophila melanogaster, the TG lipase Brummer is centrally important for body fat mobilization. Its gene brummer (bmm) encodes the ortholog of mammalian adipose TG lipase, which becomes activated by α/ß-hydrolase domain-containing 5 (ABHD5/CGI-58), one member of the paralogous gene pair, α/ß-hydrolase domain-containing 4 (ABHD4) and ABHD5 In Drosophila, the pummelig (puml) gene encodes the single sequence-related protein to mammalian ABHD4/ABHD5 with unknown function. We generated puml deletion mutant flies, that were short-lived as a result of lipid metabolism changes, stored excess body fat at the expense of glycogen, and exhibited ectopic fat storage with altered TG FA profile in the fly kidneys, called Malpighian tubules. TG accumulation in puml mutants was not associated with increased food intake but with elevated lipogenesis; starvation-induced lipid mobilization remained functional. Despite its structural similarity to mammalian ABHD5, Puml did not stimulate TG lipase activity of Bmm in vitro. Rather, Puml acted as a phospholipase that localized on lipid droplets, mitochondria, and peroxisomes. Together, these results show that the ABHD4/5 family member Puml is a versatile phospholipase that regulates Drosophila body fat storage and energy metabolism.


Assuntos
Proteínas de Drosophila/metabolismo , Metabolismo Energético , Lipase/metabolismo , Lipogênese , Lisofosfolipase/metabolismo , Túbulos de Malpighi/enzimologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Deleção de Genes , Lipase/genética , Lisofosfolipase/genética
2.
Biochim Biophys Acta ; 1841(4): 588-94, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24440819

RESUMO

Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein-protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites.


Assuntos
Acil Coenzima A/metabolismo , Tecido Adiposo/enzimologia , Lipase/metabolismo , Lipólise/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Acil Coenzima A/genética , Proteínas de Ciclo Celular/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipase/antagonistas & inibidores , Lipase/genética , Metabolismo dos Lipídeos , Esterol Esterase/antagonistas & inibidores , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
3.
Cell Metab ; 15(5): 691-702, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22560221

RESUMO

Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.


Assuntos
Aciltransferases/metabolismo , Lipídeos/biossíntese , Proteínas de Membrana/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aciltransferases/genética , Animais , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Sacarose Alimentar/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/genética , Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Modelos Moleculares , Ácidos Fosfatídicos/genética , Ácidos Fosfatídicos/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Polimorfismo Genético , Triglicerídeos/genética , Triglicerídeos/metabolismo , Regulação para Cima
4.
PLoS One ; 6(10): e26349, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039468

RESUMO

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/fisiologia , Proteínas de Ciclo Celular/fisiologia , Leucina/metabolismo , Lipase/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Ativação Enzimática , Hidrólise , Lipase/antagonistas & inibidores , Lipase/genética , Lipase/metabolismo , Lipólise , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Triglicerídeos/metabolismo
5.
Curr Opin Lipidol ; 22(3): 149-58, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21494142

RESUMO

PURPOSE OF REVIEW: Comparative gene identification-58 (CGI-58) is an important player in lipid metabolism. It acts as activator of triglyceride hydrolases and as acyl-CoA-dependent lysophosphatidic acid acyltransferase. This review aims at establishing a structure-function relationship of this still rather enigmatic protein based on recent studies characterizing different functions of CGI-58. RECENT FINDINGS: Novel studies confirm the important regulatory role of CGI-58 as activator of the triglyceride hydrolase adipose triglyceride lipase. New evidence, corroborated by the characterization of a CGI-58 knockout mouse model, also suggests the existence of yet unknown lipases that are activated by CGI-58. Additionally, CGI-58 was identified to exert acyl-CoA-dependent lysophosphatidic acid acyltransferase activity, which implies possible roles in triglyceride or phospholipid synthesis or signaling processes. Unlike mammalian CGI-58 proteins, orthologs from plants and yeast additionally act as weak triglyceride and phospholipid hydrolases. A first three-dimensional model was calculated and allows preliminary structural considerations for the functions of CGI-58. SUMMARY: Despite important progress concerning the different biochemical functions of CGI-58, the physiological importance of these activities requires better characterization. Furthermore, three-dimensional structural data for CGI-58 are required to unveil the molecular mechanism of how CGI-58 acts as activator of lipases and exerts its enzymatic functions.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/química , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Sequência de Aminoácidos , Animais , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Lipólise , Fígado/enzimologia , Dados de Sequência Molecular , Especificidade de Órgãos , Conformação Proteica , Alinhamento de Sequência , Pele/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...