Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e20975, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928043

RESUMO

We have prepared silica matrix with hexagonal symmetry of pores (SBA-15) and loaded it with anticancer drug 5-Fluorouracil (5-FU) to promote it as a drug delivery system. Gd2O3 nanoparticles were incorporated into the matrix to enhance nanosystems applicability as contrast agent for MRI, thus enabled this nanocomposite to be used as multifunctional nano-based therapeutic agent. Drug release profile was obtained by UV-VIS spectroscopy, and it indicates the prolongated release of 5-FU during the first hours and the total release after 5 h. The cytotoxicity tests using MTT-assay, fluorescent microscopy, bright-field microscopy, and flow cytometry were carried out using human glioma U87 MG cells and SK BR 3 cells. The nanocomposite with anticancer drug (Gd2O3/SBA-15/5FU) showed toxic behaviour towards studied cells, unlike nanocomposite without drug (Gd2O3/SBA-15) that was non-toxic. Our drug delivery system was designed to minimalize negative effect of Gd3+ ions at magnetic resonance imaging and drug 5-FU on healthy cells due to their encapsulation into biocompatible silica matrix, so the Gd3+ ions are more stable (in comparison to chelates), lower therapeutic dose of 5-FU is needed and its prolongated release from silica pores was confirmed. Very good T1 contrast in MR images was observed even at low concentrations, thus this nanosystem can be potentially used as contrast imaging agent.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915918

RESUMO

In this study, we describe the magnetic and structural properties and cytotoxicity of drug delivery composite (DDC) consisting of hexagonally ordered mesoporous silica, iron oxide magnetic nanoparticles (Fe2O3), and the drug naproxen (Napro). The nonsteroidal anti-inflammatory drug (NSAID) naproxen was adsorbed into the pores of MCM-41 silica after the ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) encapsulation. Our results confirm the suppression of the Brownian relaxation process caused by a "gripping effect" since the rotation of the whole particle encapsulated in the porous system of mesoporous silica was disabled. This behavior was observed for the first time, to the best of our knowledge. Therefore, the dominant relaxation mechanism in powder and liquid form is the Néel process when the rotation of the nanoparticle's magnetic moment is responsible for the relaxation. The in vitro cytotoxicity tests were performed using human glioma U87 MG cells, and the moderate manifestation of cell death, although at high concentrations of studied systems, was observed with fluorescent labeling by AnnexinV/FITC. All our results indicate that the as-prepared MCM-41/Napro/Fe2O3 composite has a potential application as a drug nanocarrier for magnetic-targeted drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...