Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(4): E466-E475, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069956

RESUMO

Cells must continuously repair inevitable DNA damage while avoiding the deleterious consequences of imprecise repair. Distinction between legitimate and illegitimate repair processes is thought to be achieved in part through differential recognition and processing of specific noncanonical DNA structures, although the mechanistic basis of discrimination remains poorly defined. Here, we show that Escherichia coli RecQ, a central DNA recombination and repair enzyme, exhibits differential processing of DNA substrates based on their geometry and structure. Through single-molecule and ensemble biophysical experiments, we elucidate how the conserved domain architecture of RecQ supports geometry-dependent shuttling and directed processing of recombination-intermediate [displacement loop (D-loop)] substrates. Our study shows that these activities together suppress illegitimate recombination in vivo, whereas unregulated duplex unwinding is detrimental for recombination precision. Based on these results, we propose a mechanism through which RecQ helicases achieve recombination precision and efficiency.


Assuntos
DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Recombinação Homóloga , RecQ Helicases/metabolismo , Reparo do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Sequências Repetidas Invertidas , RecQ Helicases/química
2.
Sci Rep ; 5: 11091, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26067769

RESUMO

DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom's syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibility that it may affect the coupling between ATP hydrolysis, translocation along single-stranded (ss)DNA and/or unwinding of double-stranded (ds)DNA. Here, we determined how these activities are affected by the abolition of the ssDNA interaction of the HRDC domain or the deletion of the entire domain in E. coli RecQ helicase. Our data show that the HRDC domain suppresses the rate of DNA-activated ATPase activity in parallel with those of ssDNA translocation and dsDNA unwinding, regardless of the ssDNA binding capability of this domain. The HRDC domain does not affect either the processivity of ssDNA translocation or the tight coupling between the ATPase, translocation, and unwinding activities. Thus, the mechanochemical coupling of E. coli RecQ appears to be independent of HRDC-ssDNA and HRDC-RecA core interactions, which may play roles in more specialized functions of the enzyme.


Assuntos
DNA Bacteriano/química , DNA de Cadeia Simples/química , Escherichia coli/enzimologia , RecQ Helicases/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Estabilidade Enzimática , Humanos , Estrutura Terciária de Proteína , Recombinases Rec A/química , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
3.
PLoS One ; 8(5): e62640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650521

RESUMO

The motor domain of myosin is the core element performing mechanochemical energy transduction. This domain contains the actin and ATP binding sites and the base of the force-transducing lever. Coordinated subdomain movements within the motor are essential in linking the ATPase chemical cycle to translocation along actin filaments. A dynamic subdomain interface located at the base of the lever was previously shown to exert an allosteric influence on ATP hydrolysis in the non-processive myosin 2 motor. By solution kinetic, spectroscopic and ensemble and single-molecule motility experiments, we determined the role of a class-specific adaptation of this interface in the mechanochemical mechanism of myosin 5a, a processive intracellular transporter. We found that the introduction of a myosin 2-specific repulsive interaction into myosin 5a via the I67K mutation perturbs the strong-binding interaction of myosin 5a with actin, influences the mechanism of ATP binding and facilitates ATP hydrolysis. At the same time, the mutation abolishes the actin-induced activation of ADP release and, in turn, slows down processive motility, especially when myosin experiences mechanical drag exerted by the action of multiple motor molecules bound to the same actin filament. The results highlight that subtle structural adaptations of the common structural scaffold of the myosin motor enable specific allosteric tuning of motor activity shaped by widely differing physiological demands.


Assuntos
Cadeias Pesadas de Miosina/química , Miosina Tipo V/química , Actinas/química , Trifosfato de Adenosina/química , Regulação Alostérica , Substituição de Aminoácidos , Animais , Fenômenos Biomecânicos , Hidrólise , Cinética , Camundongos , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosfatos/química , Mutação Puntual , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
J Biol Chem ; 287(38): 31894-904, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22753415

RESUMO

The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.


Assuntos
Citoesqueleto de Actina/química , Miosinas/química , Tropomiosina/química , Actinas/química , Animais , Anisotropia , Citoesqueleto/metabolismo , Proteínas Fetais/química , Transferência Ressonante de Energia de Fluorescência/métodos , Forminas , Cinética , Proteínas dos Microfilamentos/química , Microscopia de Fluorescência/métodos , Modelos Moleculares , Conformação Molecular , Músculo Esquelético/metabolismo , Proteínas Nucleares/química , Conformação Proteica , Coelhos , Temperatura
5.
FASEB J ; 24(11): 4480-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20631329

RESUMO

Active site loops that are conserved across superfamilies of myosins, kinesins, and G proteins play key roles in allosteric coupling of NTP hydrolysis to interaction with track filaments or effector proteins. In this study, we investigated how the class-specific natural variation in the switch-2 active site loop contributes to the motor function of the intracellular transporter myosin-5. We used single-molecule, rapid kinetic and spectroscopic experiments and semiempirical quantum chemical simulations to show that the class-specific switch-2 structure including a tyrosine (Y439) in myosin-5 enables rapid processive translocation along actin filaments by facilitating Mg(2+)-dependent ADP release. Using wild-type control and Y439 point mutant myosin-5 proteins, we demonstrate that the translocation speed precisely correlates with the kinetics of nucleotide exchange. Switch-2 variants can thus be used to fine-tune translocation speed while maintaining high processivity. The class-specific variation of switch-2 in various NTPase superfamilies indicates its general role in the kinetic tuning of Mg(2+)-dependent nucleotide exchange.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Transporte Proteico , Actinas/metabolismo , Animais , Simulação por Computador , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Mutação/genética , Nucleotídeos/metabolismo , Fosfatos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...