Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stand Genomic Sci ; 12: 75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255570

RESUMO

Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.

2.
Mol Plant Microbe Interact ; 30(5): 399-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28437159

RESUMO

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Assuntos
Ecótipo , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Cinética , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , Fenótipo , Ploidias , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
3.
Proc Natl Acad Sci U S A ; 114(17): 4543-4548, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28404731

RESUMO

The formation of symbiotic nodule cells in Medicago truncatula is driven by successive endoreduplication cycles and transcriptional reprogramming in different temporal waves including the activation of more than 600 cysteine-rich NCR genes expressed only in nodules. We show here that the transcriptional waves correlate with growing ploidy levels and have investigated how the epigenome changes during endoreduplication cycles. Differential DNA methylation was found in only a small subset of symbiotic nodule-specific genes, including more than half of the NCR genes, whereas in most genes DNA methylation was unaffected by the ploidy levels and was independent of the genes' active or repressed state. On the other hand, expression of nodule-specific genes correlated with ploidy-dependent opening of the chromatin as well as, in a subset of tested genes, with reduced H3K27me3 levels combined with enhanced H3K9ac levels. Our results suggest that endoreduplication-dependent epigenetic changes contribute to transcriptional reprogramming in the differentiation of symbiotic cells.


Assuntos
Epigenômica , Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Medicago truncatula/genética , Ploidias , Sinorhizobium/fisiologia , Perfilação da Expressão Gênica , Medicago truncatula/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
4.
BMC Genomics ; 15: 712, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25156206

RESUMO

BACKGROUND: Legumes form root nodules to house nitrogen fixing bacteria of the rhizobium family. The rhizobia are located intracellularly in the symbiotic nodule cells. In the legume Medicago truncatula these cells produce high amounts of Nodule-specific Cysteine-Rich (NCR) peptides which induce differentiation of the rhizobia into enlarged, polyploid and non-cultivable bacterial cells. NCRs are similar to innate immunity antimicrobial peptides. The NCR gene family is extremely large in Medicago with about 600 genes. RESULTS: Here we used the Medicago truncatula Gene Expression Atlas (MtGEA) and other published microarray data to analyze the expression of 334 NCR genes in 267 different experimental conditions. We find that all but five of these genes are expressed in nodules but in no other plant organ or in response to any other biotic interaction or abiotic stress tested. During symbiosis, none of the genes are induced by Nod factors. The NCR genes are activated in successive waves during nodule organogenesis, correlated with bacterial infection of the nodule cells and with a specific spatial localization of their transcripts from the apical to the proximal nodule zones. However, NCR expression is not associated with nodule senescence. According to their Shannon entropy, a measure expressing tissue specificity of gene expression, the NCR genes are among the most specifically expressed genes in M. truncatula. Moreover, when activated in nodules, their expression level is among the highest of all genes. CONCLUSIONS: Together, these data show that the NCR gene expression is subject to an extreme tight regulation and is only activated during nodule organogenesis in the polyploid symbiotic cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Peptídeos/genética , Nódulos Radiculares de Plantas/genética , Envelhecimento/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Estresse Fisiológico/genética , Ativação Transcricional
5.
J Bacteriol ; 193(17): 4561-2, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21705602

RESUMO

Propionibacterium acnes is an anaerobic Gram-positive bacterium that forms part of the normal human cutaneous microbiota and is thought to play a central role in acne vulgaris, a chronic inflammatory disease of the pilosebaceous unit (I. Kurokawa et al., Exp. Dermatol. 18:821-832, 2009). Here we present the whole genome sequence of P. acnes type IB strain 6609, which was recovered from a skin sample from a woman with no recorded acne history and is thus considered a nonpathogenic strain (I. Nagy, Microbes Infect. 8:2195-2205, 2006).


Assuntos
Genoma Bacteriano , Propionibacterium acnes/genética , Propionibacterium acnes/isolamento & purificação , Pele/microbiologia , Acne Vulgar/microbiologia , Cromossomos Bacterianos/genética , Feminino , Genes de RNAr , Loci Gênicos , Humanos , Dados de Sequência Molecular , Filogenia , RNA de Transferência/genética , Análise de Sequência de RNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...