Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(8): 10394-10401, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692539

RESUMO

Producing crystals of the desired form (polymorph) is currently a challenge as nucleation is yet to be fully understood. Templated crystallization is an efficient approach to achieve polymorph selectivity; however, it is still unclear how to design the template to achieve selective crystallization of specific polymorphs. More insights into the nanoscale interactions happening during nucleation are needed. In this work, we investigate crystallization of glycine using graphene, with different surface chemistry, as a template. We show that graphene induces the preferential crystallization of the metastable α-polymorph compared to the unstable ß-form at the contact region of an evaporating droplet. Computer modeling indicates the presence of a small amount of oxidized moieties on graphene to be responsible for the increased stabilization of the α-form. In conclusion, our work shows that graphene could become an attractive material for polymorph selectivity and screening by exploiting its tunable surface chemistry.

2.
Nano Lett ; 20(5): 3411-3419, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32233490

RESUMO

Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work, we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including postprocessing. Under specific conditions, the formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature, and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.

3.
Chem Sci ; 11(9): 2472-2478, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34084412

RESUMO

A new and diverse family of pyrene derivatives was synthesised via palladium-catalysed C-H ortho-arylation of pyrene-1-carboxylic acid. The strategy affords easy access to a broad scope of 2-substituted and 1,2-disubstituted pyrenes. The C1-substituent can be easily transformed into carboxylic acid, iodide, alkynyl, aryl or alkyl functionalities. This approach gives access to arylated pyrene ammonium salts, which outperformed their non-arylated parent compound during aqueous Liquid Phase Exfoliation (LPE) of graphite and compare favourably to state-of-the-art sodium pyrene-1-sulfonate PS1. This allowed the production of concentrated and stable suspensions of graphene flakes in water.

4.
J Am Chem Soc ; 140(33): 10416-10420, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30084630

RESUMO

We report a novel type of structurally defined graphene nanoribbons (GNRs) with uniform width of 1.7 nm and average length up to 58 nm. These GNRs are decorated with pending Diels-Alder cycloadducts of anthracenyl units and N- n-hexadecyl maleimide. The resultant bulky side groups on GNRs afford excellent dispersibility with concentrations of up to 5 mg mL-1 in many organic solvents such as tetrahydrofuran (THF), two orders of magnitude higher than the previously reported GNRs. Multiple spectroscopic studies confirm that dilute dispersions in THF (<0.1 mg mL-1) consist mainly of nonaggregated ribbons, exhibiting near-infrared emission with high quantum yield (9.1%) and long lifetime (8.7 ns). This unprecedented dispersibility allows resolving in real-time ultrafast excited-state dynamics of the GNRs, which displays features of small isolated molecules in solution. This study achieves a breakthrough in the dispersion of GNRs, which opens the door for unveiling obstructed GNR-based physical properties and potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...