Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(22): 14198-14206, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771928

RESUMO

The ferroelectric photovoltaic effect (FPVE) enables alternate pathways for energy conversion that are not allowed in centrosymmetric materials. Understanding the dominant mechanism of the FPVE at the ultrathin limit is important for defining the ultimate efficiency. In contrast to the wide band gap conventional thin-film ferroelectrics, 2D α-In2Se3 has an ideal band gap of 1.3 eV and enables the fabrication of ultrathin and stable heterostructures, providing the perfect platform to explore FPVE in the nanoscale limit. Here, we study the ferroelectric layer thickness-dependent FPVE in vertical few-layer graphene/α-In2Se3/graphene heterostructures. We find that the short-circuit photocurrent is antiparallel to the ferroelectric polarization and increases exponentially with decreasing thickness. We show that the observed behavior is predicted by the depolarization field model, originating from the unscreened bound charges due to the finite density of states in semimetal few-layer graphene. As a result, the heterostructures show enhancement of the power conversion efficiency, reaching 2.56 × 10-3% under 100 W/cm2 in 18 nm thick α-In2Se3, approximately 275 times more than the 50 nm thick α-In2Se3. These results demonstrate the importance of the depolarization field at the nanoscale and define design principles for the potential of harnessing FPVE at reduced dimension.

2.
Nat Commun ; 14(1): 5801, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726306

RESUMO

Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow.

4.
ACS Nano ; 17(8): 7881-7888, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37057994

RESUMO

The low bending stiffness of atomic membranes from van der Waals ferroelectrics such as α-In2Se3 allow access to a regime of strong coupling between electrical polarization and mechanical deformation at extremely high strain gradients and nanoscale curvatures. Here, we investigate the atomic structure and polarization at bends in multilayer α-In2Se3 at high curvatures down to 0.3 nm utilizing atomic-resolution scanning transmission electron microscopy, density functional theory, and piezoelectric force microscopy. We find that bent α-In2Se3 produces two classes of structures: arcs, which form at bending angles below ∼33°, and kinks, which form above ∼33°. While arcs preserve the original polarization of the material, kinks contain ferroelectric domain walls that reverse the out-of-plane polarization. We show that these kinks stabilize ferroelectric domains that can be extremely small, down to 2 atoms or ∼4 Å wide at their narrowest point. Using DFT modeling and the theory of geometrically necessary disclinations, we derive conditions for the formation of kink-induced ferroelectric domain boundaries. Finally, we demonstrate direct control over the ferroelectric polarization using templated substrates to induce patterned micro- and nanoscale ferroelectric domains with alternating polarization. Our results describe the electromechanical coupling of α-In2Se3 at the highest limits of curvature and demonstrate a strategy for nanoscale ferroelectric domain patterning.

5.
Adv Mater ; 35(27): e2107362, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34866241

RESUMO

Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.

6.
ACS Nano ; 15(6): 10095-10106, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34114798

RESUMO

Understanding modulation of liquid molecule slippage along graphene surfaces is crucial for many promising applications of two-dimensional materials, such as in sensors, nanofluidic devices, and biological systems. Here, we use force measurements by atomic force microscopy (AFM) to directly measure hydrodynamic, solvation, and frictional forces along the graphene plane in seven liquids. The results show that the greater slip lengths correlate with the interfacial ordering of the liquid molecules, which suggests that the ordering of the liquid forming multiple layers promotes slip. This phenomenon appears to be more relevant than solely the wetting behavior of graphene or the solid-liquid interaction energy, as traditionally assumed. Furthermore, the slip boundary condition of the liquids along the graphene plane is sensitive to the substrate underneath graphene, indicating that the underlying substrate affects graphene's interaction with the liquid molecules. Because interfacial slip can have prominent consequences on the pressure drop, on electrical and diffusive transport through nanochannels, and on lubrication, this work can inspire innovation in many applications through the modulation of the substrate underneath graphene and of the interfacial ordering of the liquid.

7.
RSC Adv ; 8(53): 30354-30365, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546866

RESUMO

Silicene has become a topic of interest nowadays due to its potential application in various electro-mechanical nanodevices. In our previous work on silicene, fracture stresses of single crystal and polycrystalline silicene have been investigated. Existence of defects in the form of cracks reduces the fracture strength of silicene nanosheets to a great extent. In this study, an engineering way has been proposed for improving the fracture stress of silicene nanosheets with a pre-existing crack by incorporating auxiliary cracks symmetrically in a direction perpendicular to the main crack. We call this mechanism the "Failure shielding mechanism". An extensive molecular dynamics simulation based analysis has been performed to capture the atomic level auxiliary crack-main crack interactions. It is found that the main crack tip stress distribution is significantly changed with the presence of auxiliary cracks for loading along both armchair and zigzag directions. The effects of temperature and the crack propagation speed of silicene have also been studied. Interestingly, in the case of loading along the zigzag direction, SW defect formation is observed at the tip of main crack. This leads to a reduction of the tip stress resulting in a more prominent failure shielding in case of zigzag loading than in armchair loading. Moreover, the position and length of the cracks as well as the loading directions have significant impacts on the tip stress distribution. Finally, this study opens the possibilities of strain engineering for silicene by proposing an engineering way to tailor the fracture strength of silicene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...