Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5130, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050294

RESUMO

Phase transition points can be used to critically reduce the ionic migration activation energy, which is important for realizing high-performance electrolytes at low temperatures. Here, we demonstrate a route toward low-temperature thermionic conduction in solids, by exploiting the critically lowered activation energy associated with oxygen transport in Ca-substituted bismuth ferrite (Bi1-xCaxFeO3-δ) films. Our demonstration relies on the finding that a compositional phase transition occurs by varying Ca doping ratio across xCa ≃ 0.45 between two structural phases with oxygen-vacancy channel ordering along <100> or <110> crystal axis, respectively. Regardless of the atomic-scale irregularity in defect distribution at the doping ratio, the activation energy is largely suppressed to 0.43 eV, compared with ~0.9 eV measured in otherwise rigid phases. From first-principles calculations, we propose that the effective short-range attraction between two positively charged oxygen vacancies sharing lattice deformation not only forms the defect orders but also suppresses the activation energy through concerted hopping.

2.
ACS Appl Mater Interfaces ; 14(11): 13490-13498, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258276

RESUMO

Zinc oxynitride (ZnON) has the potential to overcome the performance and stability limitations of current amorphous oxide semiconductors because ZnON-based thin-film transistors (TFTs) have a high field-effect mobility of 50 cm2/Vs and exceptional stability under bias and light illumination. However, due to the weak zinc-nitrogen interaction, ZnON is chemically unstable─N is rapidly volatilized in air. As a result, recent research on ZnON TFTs has focused on improving air stability. We demonstrate through experimental and first-principles studies that the ZnF2/ZnON bilayer structure provides a facile way to achieve air stability with carrier controllability. This increase in air stability (e.g., nitrogen non-volatilization) occurs because the ZnF2 layer effectively protects the atomic mixing between ZnON and air, and the decrease in the ZnON carrier concentration is caused by a shallow-to-deep electronic transition of nitrogen deficiency diffused from ZnON into the interface. Further, the TFT based on the ZnF2/ZnON bilayer structure enables long-term air stability while retaining an optimal switching property of high field-effect mobility (∼100 cm2/Vs) even at a relatively low post-annealing temperature. The ZnF2/ZnON-bilayer TFT device exhibits fast switching behavior between 1 kHz and 0.1 MHz while maintaining a stable and clear switching response, paving the way for next-generation high-speed electronic applications.

3.
Sci Adv ; 6(41)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33036971

RESUMO

Mobile oxygen vacancies offer a substantial potential to broaden the range of optical functionalities of complex transition metal oxides due to their high mobility and the interplay with correlated electrons. Here, we report a large electro-absorptive optical variation induced by a topotactic transition via oxygen vacancy fluidic motion in calcium ferrite with large-scale uniformity. The coloration efficiency reaches ~80 cm2 C-1, which means that a 300-nm-thick layer blocks 99% of transmitted visible light by the electrical switching. By tracking the color propagation, oxygen vacancy mobility can be estimated to be 10-8 cm2 s-1 V-1 near 300°C, which is a giant value attained due to the mosaic pseudomonoclinic film stabilized on LaAlO3 substrate. First-principles calculations reveal that the defect density modulation associated with hole charge injection causes a prominent change in electron correlation, resulting in the light absorption modulation. Our findings will pave the pathway for practical topotactic electrochromic applications.

4.
ACS Appl Mater Interfaces ; 12(3): 3719-3726, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31889442

RESUMO

The trade-off between performance and stability in amorphous oxide semiconductor-based thin-film transistors (TFTs) has been a critical challenge, meaning that it is difficult to simultaneously achieve high mobility and stability under bias and light stresses. Here, an amorphous mixture of two indium-free BaSnO3 and ZnSnO3 compounds, a-(Zn,Ba)SnO3, is proposed as a feasible strategy to achieve high mobility and stability at the same time. The choice of BaSnO3 as a counterpart to ZnSnO3, a well-known In-free candidate in amorphous oxide semiconductors, is to improve structural order and oxygen stoichiometry due to the large heat of formation and to preserve electron mobility due to the same kind of octahedral Sn-O network. Our first-principles calculations indeed show that compared to pure a-ZnSnO3, BaSnO3 plays a crucial role in restoring structural order in both stoichiometric and O-deficient supercells without seriously damaging the conduction band minimum. The resulting features of a-(Zn,Ba)SnO3 reduce O-deficiency and the valence band tail states, which are known to be critically associated with instability. It is experimentally demonstrated that a-(Zn,Ba)SnO3-based TFTs simultaneously exhibit high mobility (>20 cm2 V-1 s-1) and remarkable stability against negative bias illumination stress (ΔVth: <0.9 V). Our results suggest that a-(Zn,Ba)SnO3 would be a strong In-free candidate for next-generation TFT display, replacing the conventional a-InGaZnO4.

5.
Adv Mater ; 31(43): e1903738, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31517407

RESUMO

Lattice defects typically reduce lattice thermal conductivity, which has been widely exploited in applications such as thermoelectric energy conversion. Here, an anomalous dependence of the lattice thermal conductivity on point defects is demonstrated in epitaxial WO3 thin films. Depending on the substrate, the lattice of epitaxial WO3 expands or contracts as protons are intercalated by electrolyte gating or oxygen vacancies are introduced by adjusting growth conditions. Surprisingly, the observed lattice volume, instead of the defect concentration, plays the dominant role in determining the thermal conductivity. In particular, the thermal conductivity increases significantly with proton intercalation, which is contrary to the expectation that point defects typically lower the lattice thermal conductivity. The thermal conductivity can be dynamically varied by a factor of ≈1.7 via electrolyte gating, and tuned over a larger range, from 7.8 to 1.1 W m-1 K-1 , by adjusting the oxygen pressure during film growth. The electrolyte-gating-induced changes in thermal conductivity and lattice dimensions are reversible through multiple cycles. These findings not only expand the basic understanding of thermal transport in complex oxides, but also provide a path to dynamically control the thermal conductivity.

7.
Nano Lett ; 18(3): 1745-1750, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29461844

RESUMO

57Fe nuclear magnetic resonance (NMR) of magnetite nanocrystals ranging in size from 7 nm to 7 µm is measured. The line width of the NMR spectra changes drastically around 120 K, showing microscopic evidence of the Verwey transition. In the region above the transition temperature, the line width of the spectrum increases and the spin-spin relaxation time decreases as the nanocrystal size decreases. The line-width broadening indicates the significant deformation of magnetic structure and reduction of charge order compared to bulk crystals, even when the structural distortion is unobservable. The reduction of the spin-spin relaxation time is attributed to the suppressed polaron hopping conductivity in ferromagnetic metals, which is a consequence of the enhanced electron-phonon coupling in the quantum-confinement regime. Our results show that the magnetic distortion occurs in the entire nanocrystal and does not comply with the simple model of the core-shell binary structure with a sharp boundary.

8.
ACS Appl Mater Interfaces ; 9(32): 27305-27312, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28731326

RESUMO

With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.

9.
Sci Rep ; 7(1): 2111, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522801

RESUMO

Zinc oxynitride (ZnON) semiconductors are suitable for high performance thin-film transistors (TFTs) with excellent device stability under negative bias illumination stress (NBIS). The present work provides a first approach on the optimization of electrical performance and stability of the TFTs via studying the resonant interaction between anions or vacancies in ZnON. It is found that the incorporation of nitrogen increases the concentration of nitrogen vacancies (VN+s), which generate larger concentrations of free electrons with increased mobility. However, a critical amount of nitrogen exists, above which electrically inactive divacancy (VN-VN)0 forms, thus reducing the number of carriers and their mobility. The presence of nitrogen anions also reduces the relative content of oxygen anions, therefore diminishing the probability of forming O-O dimers (peroxides). The latter is well known to accelerate device degradation under NBIS. Calculations indicate that a balance between device performance and NBIS stability may be achieved by optimizing the nitrogen to oxygen anion ratio. Experimental results confirm that the degradation of the TFTs with respect to NBIS becomes less severe as the nitrogen content in the film increases, while the device performance reaches an intermediate peak, with field effect mobility exceeding 50 cm2/Vs.

10.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28256752

RESUMO

The atomic-scale synthesis of artificial oxide heterostructures offers new opportunities to create novel states that do not occur in nature. The main challenge related to synthesizing these structures is obtaining atomically sharp interfaces with designed termination sequences. In this study, it is demonstrated that the oxygen pressure (PO2) during growth plays an important role in controlling the interfacial terminations of SrRuO3 /BaTiO3 /SrRuO3 (SRO/BTO/SRO) ferroelectric (FE) capacitors. The SRO/BTO/SRO heterostructures are grown by a pulsed laser deposition method. The top SRO/BTO interface, grown at high PO2 (around 150 mTorr), usually exhibits a mixture of RuO2 -BaO and SrO-TiO2 terminations. By reducing PO2, the authors obtain atomically sharp SRO/BTO top interfaces with uniform SrO-TiO2 termination. Using capacitor devices with symmetric and uniform interfacial termination, it is demonstrated for the first time that the FE critical thickness can reach the theoretical limit of 3.5 unit cells.

11.
Sci Rep ; 7: 40907, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112188

RESUMO

Throughout the past decades, doped-ZnO has been widely used in various optical, electrical, magnetic, and energy devices. While almost every element in the Periodic Table was doped in ZnO, the systematic computational study is still limited to a small number of dopants, which may hinder a firm understanding of experimental observations. In this report, we systematically calculate the single-element doping property of ZnO using first-principles calculations. We develop an automation code that enables efficient and reliable high-throughput calculations on thousands of possible dopant configurations. As a result, we obtain formation-energy diagrams for total 61 dopants, ranging from Li to Bi. Furthermore, we evaluate each dopant in terms of n-type/p-type behaviors by identifying the major dopant configurations and calculating carrier concentrations at a specific dopant density. The existence of localized magnetic moment is also examined for spintronic applications. The property database obtained here for doped ZnO will serve as a useful reference in engineering the material property of ZnO through doping.

12.
Nat Commun ; 7: 13146, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759004

RESUMO

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

13.
Sci Rep ; 6: 35148, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748378

RESUMO

The persistent photoconductivity (PPC) in ZnO has been a critical problem in opto-electrical devices employing ZnO such as ultraviolet sensors and thin film transistors for the transparent display. While the metastable state of oxygen vacancy (VO) is widely accepted as the microscopic origin of PPC, recent experiments on the influence of temperature and oxygen environments are at variance with the VO model. In this study, using the density-functional theory calculations, we propose a novel mechanism of PPC that involves the hydrogen-zinc vacancy defect complex (2H-VZn). We show that a substantial amount of 2H-VZn can exist during the growth process due to its low formation energy. The light absorption of 2H-VZn leads to the metastable state that is characterized by the formation of (peroxide) around the defect, leaving the free carriers in the conduction band. Furthermore, we estimate the lifetime of photo-electrons to be ~20 secs, which is similar to the experimental observation. Our model also explains the experimental results showing that PPC is enhanced (suppressed) in oxygen-rich (low-temperature) conditions. By revealing a convincing origin of PPC in ZnO, we expect that the present work will pave the way for optimizing optoelectronic properties of ZnO.

14.
Sci Rep ; 4: 4124, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24535157

RESUMO

Substitutional hydrogen at oxygen site (HO) is well-known to be a robust source of n-type conductivity in ZnO, but a puzzling aspect is that the doping limit by hydrogen is only about 10(18) cm(-3), even if solubility limit is much higher. Another puzzling aspect of ZnO is persistent photoconductivity, which prevents the wide applications of the ZnO-based thin film transistor. Up to now, there is no satisfactory theory about two puzzles. We report the bistability of HO in ZnO through first-principles electronic structure calculations. We find that as Fermi level is close to conduction bands, the HO can undergo a large lattice relaxation, through which a deep level can be induced, capturing electrons and the deep state can be transformed into shallow donor state by a photon absorption. We suggest that the bistability can give explanations to two puzzling aspects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...