Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 29(12): 4127-4143.e8, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851938

RESUMO

The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced ß-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce ß-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.


Assuntos
Fígado/metabolismo , PPAR alfa/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Western Blotting , Células Cultivadas , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Transgênicos , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuínas/genética
2.
PLoS One ; 12(4): e0176371, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448551

RESUMO

The NAD+-dependent SIRT6 deacetylase was shown to be a major regulator of lifespan and healthspan. Mice deficient for SIRT6 develop a premature aging phenotype and metabolic defects, and die before four weeks of age. Thus, the effect of SIRT6 deficiency in adult mice is unknown. Here we show that SIRT6-/- mice in mixed 129/SvJ/BALB/c background reach adulthood, allowing examination of SIRT6-related metabolic and developmental phenotypes in adult mice. In this mixed background, at 200 days of age, more than 80% of the female knock-out mice were alive whereas only 10% of male knock-out mice survived. In comparison to their wild-type littermates, SIRT6 deficient mice have reduced body weight, increased glucose uptake and exhibit an age-dependent progressive impairment of retinal function accompanied by thinning of retinal layers. Together, these results demonstrate a role for SIRT6 in metabolism and age-related ocular changes in adult mice and suggest a gender specific regulation of lifespan by SIRT6.


Assuntos
Técnicas de Inativação de Genes , Sirtuínas/deficiência , Sirtuínas/genética , Adiposidade/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Transporte Biológico/genética , Peso Corporal/genética , Feminino , Glucose/metabolismo , Masculino , Camundongos , Fenótipo
3.
Nature ; 483(7388): 218-21, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22367546

RESUMO

The significant increase in human lifespan during the past century confronts us with great medical challenges. To meet these challenges, the mechanisms that determine healthy ageing must be understood and controlled. Sirtuins are highly conserved deacetylases that have been shown to regulate lifespan in yeast, nematodes and fruitflies. However, the role of sirtuins in regulating worm and fly lifespan has recently become controversial. Moreover, the role of the seven mammalian sirtuins, SIRT1 to SIRT7 (homologues of the yeast sirtuin Sir2), in regulating lifespan is unclear. Here we show that male, but not female, transgenic mice overexpressing Sirt6 (ref. 4) have a significantly longer lifespan than wild-type mice. Gene expression analysis revealed significant differences between male Sirt6-transgenic mice and male wild-type mice: transgenic males displayed lower serum levels of insulin-like growth factor 1 (IGF1), higher levels of IGF-binding protein 1 and altered phosphorylation levels of major components of IGF1 signalling, a key pathway in the regulation of lifespan. This study shows the regulation of mammalian lifespan by a sirtuin family member and has important therapeutic implications for age-related diseases.


Assuntos
Longevidade/fisiologia , Caracteres Sexuais , Sirtuínas/metabolismo , Animais , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Fator de Crescimento Insulin-Like I/análise , Estimativa de Kaplan-Meier , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Sirtuínas/genética
4.
Aging Cell ; 9(2): 162-73, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20047575

RESUMO

The NAD+-dependent SIRT6 deacetylase is a therapeutic candidate against the emerging metabolic syndrome epidemic. SIRT6, whose deficiency in mice results in premature aging phenotypes and metabolic defects, was implicated in a calorie restriction response that showed an opposite set of phenotypes from the metabolic syndrome. To explore the role of SIRT6 in metabolic stress, wild type and transgenic (TG) mice overexpressing SIRT6 were fed a high fat diet. In comparison to their wild-type littermates, SIRT6 TG mice accumulated significantly less visceral fat, LDL-cholesterol, and triglycerides. TG mice displayed enhanced glucose tolerance along with increased glucose-stimulated insulin secretion. Gene expression analysis of adipose tissue revealed that the positive effect of SIRT6 overexpression is associated with down regulation of a selective set of peroxisome proliferator-activated receptor-responsive genes, and genes associated with lipid storage, such as angiopoietin-like protein 4, adipocyte fatty acid-binding protein, and diacylglycerol acyltransferase 1, which were suggested as potential targets for drugs to control metabolic syndrome. These results demonstrate a protective role for SIRT6 against the metabolic consequences of diet-induced obesity and suggest a potentially beneficial effect of SIRT6 activation on age-related metabolic diseases.


Assuntos
Ração Animal/efeitos adversos , Gorduras/efeitos adversos , Obesidade/metabolismo , Obesidade/patologia , Sirtuínas/metabolismo , Animais , Gorduras/administração & dosagem , Regulação da Expressão Gênica , Homeostase , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/genética , PPAR gama/metabolismo , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...