Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAC Antimicrob Resist ; 6(2): dlae056, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585225

RESUMO

Objectives: To evaluate the stability of ceftazidime/avibactam in elastomeric infusers, utilizing the UK's Yellow Cover Document (YCD) stability testing framework, in conditions representative of OPAT practice. Methods: Ceftazidime/avibactam was reconstituted with sodium chloride 0.9% (w/v) in two elastomeric infusers at concentrations (dose) levels of 1500/375, 3000/750 and 6000 mg/1500 mg in 240 mL. The infusers were exposed to a fridge storage (2°C-8°C) for 14 days followed by 24 h in-use temperature (32°C). Results: After 14 days of fridge storage and subsequent 24 h exposure to 32°C, mean ±â€ŠSD of ceftazidime percent remaining was 75.5% ±â€Š1.8%, 79.9% ±â€Š1.1%, 82.4% ±â€Š0.6%, for Easypump, and 81.7% ±â€Š1.2%, 82.5% ±â€Š0.5%, 85.4% ±â€Š1.1% for Dosi-Fuser devices at the high, intermediate and low doses tested, respectively. For avibactam, mean ±â€ŠSD percent remaining was 83.2% ±â€Š1.8%, 87.4% ±â€Š2.0%, 93.1% ±â€Š0.9% for Easypump, and 85.1% ±â€Š2.0%, 86.7% ±â€Š0.1%, 92.5% ±â€Š0.1% for Dosi-Fuser devices. The cumulative amount of pyridine generated in the devices ranged from 10.4 mg at low dose to 76.9 mg at high dose. Regression-based simulation showed that the degradation of both ceftazidime and avibactam was <10% for at least 12 h of the running phase, if stored in a fridge for not more than 72 h prior to in-use temperature exposure. Conclusions: Whilst not meeting the strict UK YCD criteria for ≤5% degradation, ceftazidime/avibactam may be acceptable to administer as a continuous 12 hourly infusion in those territories where degradation of ≤10% is deemed acceptable.

2.
J Periodontol ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724702

RESUMO

BACKGROUND: The aim of this study was to investigate an in vitro dynamic bioreactor model by evaluating the antimicrobial effect of clinically relevant amoxicillin doses on polymicrobial microcosm biofilms derived from subgingival plaque. METHODS: Biofilms from pooled subgingival plaque were grown for 108  hours in control and experimental dynamic biofilm reactors. Amoxicillin was subsequently infused into the experimental reactor to simulate the pharmacokinetic profile of a standard 500 mg thrice-daily dosing regimen over 5 days and biofilms were assessed by live/dead staining, scanning electron microscopy, and quantitative polymerase chain reaction. RESULTS: Following establishment of the oral microcosm biofilms, confocal imaging analysis showed a significant increase in dead bacteria at 8 hours (p = 0.0095), 48 hours (p = 0.0070), 96 hours (p = 0.0140), and 120 hours (p < 0.0001) in the amoxicillin-treated biofilms compared to the control biofilms. Nevertheless, viable bacteria remained in the center of the biofilm at all timepoints. Significant reductions/elimination in Campylobacter rectus, Tannerella forsythia, Aggregatibacter actinomycetemcomitans, and Peptostreptococcus anaerobius was observed among the amoxicillin-treated biofilms at the 96 and 120 hour timepoints. CONCLUSION: A novel in vitro dynamic model of oral microcosm biofilms was effective in modeling the antimicrobial effect of a pharmacokinetically simulated clinically relevant dose of amoxicillin.

3.
Antibiotics (Basel) ; 11(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36358238

RESUMO

Static concentration in vitro studies have demonstrated that fosfomycin- or sulbactam-based combinations may be efficacious against carbapenem-resistant Acinetobacter baumannii (CRAB). In the present study, we aimed to evaluate the bacterial killing and resistance suppression potential of fosfomycin-sulbactam combination therapies against CRAB isolates in a dynamic infection model. We simulated clinically relevant dosing regimens of fosfomycin (8 g every 8 h, 1 h infusion) and sulbactam (12 g continuous infusion or 4 g every 8 h, 4 h infusion) alone and in combination for 7 days in a hollow-fibre infection model (HFIM) against three clinical isolates of CRAB. The simulated pharmacokinetic profiles in the HFIM were based on fosfomycin and sulbactam data from critically ill patients. Fosfomycin monotherapy resulted in limited bacterial killing. Sulbactam monotherapies resulted in ~ 3 to 4 log10 kill within the first 8 to 32 h followed by regrowth of up to 8 to 10 log10 CFU/mL. A combination of fosfomycin and continuous infusion of sulbactam led to a ~2 to 4 log10 reduction in bacterial burden within the first 24 h, which was sustained throughout the duration of the experiments. A combination of fosfomycin and extended infusion of sulbactam produced a ~4 log10 reduction in colony count within 24 h. This study demonstrated that fosfomycin in combination with sulbactam is a promising option for the treatment of MDR A. baumannii. Further studies are needed to further assess the potential clinical utility of this combination.

4.
J Antimicrob Chemother ; 77(11): 3026-3034, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031790

RESUMO

OBJECTIVES: To compare the bacterial killing and emergence of resistance of intermittent versus prolonged (extended and continuous infusions) infusion dosing regimens of piperacillin/tazobactam against two Escherichia coli clinical isolates in a dynamic hollow-fibre infection model (HFIM). METHODS: Three piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion) against a ceftriaxone-susceptible, non-ESBL-producing E. coli 44 (Ec44, MIC 2 mg/L) and six piperacillin/tazobactam dosing regimens (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion; 4/0.5 g 6 hourly as 0.5 and 3 h infusions and 16/2 g/24 h continuous infusion) were simulated against a ceftriaxone-resistant, AmpC- and ESBL-producing E. coli 50 (Ec50, MIC 8 mg/L) in a HFIM over 7 days (initial inoculum ∼107 cfu/mL). Total and less-susceptible subpopulations and MICs were determined. RESULTS: All simulated dosing regimens against Ec44 exhibited 4 log10 of bacterial killing over 8 h without regrowth and resistance emergence throughout the experiment. For Ec50, there was the initial bacterial killing of 4 log10 followed by regrowth to 1011 cfu/mL within 24 h against all simulated dosing regimens, and the MICs for resistant subpopulations exceeded 256 mg/L at 72 h. CONCLUSIONS: Our study suggests that, for critically ill patients, conventional intermittent infusion, or prolonged infusions of piperacillin/tazobactam may suppress resistant subpopulations of non-ESBL-producing E. coli clinical isolates. However, intermittent, or prolonged infusions may not suppress the resistant subpopulations of AmpC- and ESBL-producing E. coli clinical isolates. More studies are required to confirm these findings.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Piperacilina/farmacologia , Piperacilina/uso terapêutico , Ácido Penicilânico/farmacologia , Ceftriaxona , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação Piperacilina e Tazobactam , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
5.
Antimicrob Agents Chemother ; 66(9): e0016222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924928

RESUMO

Carbapenems are recommended for the treatment of urosepsis caused by extended-spectrum ß-lactamase (ESBL)-producing, multidrug-resistant Escherichia coli; however, due to selection of carbapenem resistance, there is an increasing interest in alternative treatment regimens including the use of ß-lactam-aminoglycoside combinations. We compared the pharmacodynamic activity of piperacillin-tazobactam and amikacin as mono and combination therapy versus meropenem monotherapy against extended-spectrum ß-lactamase (ESBL)-producing, piperacillin-tazobactam resistant E. coli using a dynamic hollow fiber infection model (HFIM) over 7 days. Broth-microdilution was performed to determine the MIC of E. coli isolates. Whole genome sequencing was conducted. Four E. coli isolates were tested in HFIM with an initial inoculum of ~107 CFU/mL. Dosing regimens tested were piperacillin-tazobactam 4.5 g, 6-hourly, plus amikacin 30 mg/kg, 24-hourly, as combination therapy, and piperacillin-tazobactam 4.5 g, 6-hourly, amikacin 30 mg/kg, 24-hourly, and meropenem 1 g, 8-hourly, each as monotherapy. We observed that piperacillin-tazobactam and amikacin monotherapy demonstrated initial rapid bacterial killing but then led to amplification of resistant subpopulations. The piperacillin-tazobactam/amikacin combination and meropenem experiments both attained a rapid bacterial killing (~4-5 log10) within 24 h and did not result in any emergence of resistant subpopulations. Genome sequencing demonstrated that all ESBL-producing E. coli clinical isolates carried multiple antibiotic resistance genes including blaCTX-M-15, blaOXA-1, blaEC, blaTEM-1, and aac(6')-Ib-cr. These results suggest that the combination of piperacillin-tazobactam/amikacin may have a potential role as a carbapenem-sparing regimen, which should be tested in future urosepsis clinical trials.


Assuntos
Amicacina , Escherichia coli , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Piperacilina/farmacologia , Piperacilina/uso terapêutico , Combinação Piperacilina e Tazobactam , beta-Lactamases/genética , beta-Lactamas
6.
Int J Antimicrob Agents ; 60(2): 106623, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728714

RESUMO

Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli are a global public-health concern. We evaluated the pharmacodynamic activity of piperacillin/tazobactam (TZP) dosing regimens against ESBL-producing versus non-ESBL-producing E. coli. Five E. coli clinical isolates were obtained from Bangladesh. Broth microdilution and whole-genome sequencing (WGS) were performed on the five studied isolates. Three TZP-susceptible ESBL-producing and two non-ESBL-producing E. coli were exposed to TZP regimens of 4.5 g every 6 h (q6h) and every 8 h (q8h) as a 30-min infusion in a dynamic hollow-fibre infection model over 7 days. The extent of bacterial killing was ∼4-5 log10 CFU/mL against ESBL-producing and non-ESBL-producing E. coli with TZP q6h and q8h regimens over the first 8 h. Bacterial killing was similar between two of three ESBL-producing (CTAP#168 and CTAP#169) and two non-ESBL-producing (CTAP#179 and CTAP#180) E. coli clinical isolates over the course of the experiment. ESBL-producing CTAP#173 E. coli was poorly killed (∼1 log) compared with two non-ESBL-producing E. coli over 168 h. WGS revealed that ESBL-producing E. coli isolates co-harboured multiple antimicrobial resistance genes such as blaCTX-M-15, blaEC, blaOXA-1, blaTEM-1 and aac(6')-Ib-cr5. Overall, TZP q6h and q8h dosing regimens attained >3 log bacterial kill against all ESBL-producing or non-ESBL-producing E. coli within 24 h and maintained and prevented the emergence of resistance through the end of the experiment. In conclusion, TZP standard regimens resulted in similar bacterial killing and prevented the emergence of resistance against CTX-M-15-type ESBL-producing and non-ESBL-producing E. coli clinical isolates.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam , beta-Lactamases/genética
7.
Microbiol Spectr ; 10(3): e0052522, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35442072

RESUMO

Debate continues as to the role of combination antibiotic therapy for the management of Pseudomonas aeruginosa infections. We studied the extent of bacterial killing by and the emergence of resistance to meropenem and amikacin as monotherapies and as a combination therapy against susceptible and resistant P. aeruginosa isolates from bacteremic patients using the dynamic in vitro hollow-fiber infection model. Three P. aeruginosa isolates (meropenem MICs of 0.125, 0.25, and 64 mg/L) were used, simulating bacteremia with an initial inoculum of ~1 × 105 CFU/mL and the expected pharmacokinetics of meropenem and amikacin in critically ill patients. For isolates susceptible to amikacin and meropenem (isolates 1 and 2), the extent of bacterial killing was increased with the combination regimen compared with the killing by monotherapy of either antibiotic. Both the combination and meropenem monotherapy were able to sustain bacterial killing throughout the 7-day treatment course, whereas regrowth of bacteria occurred with amikacin monotherapy after 12 h. For the meropenem-resistant P. aeruginosa isolate (isolate 3), only the combination regimen demonstrated bacterial killing. Given that tailored antibiotic regimens can maximize potential synergy against some isolates, future studies should explore the benefit of combination therapy against resistant P. aeruginosa. IMPORTANCE Current guidelines recommend that aminoglycosides should be used in combination with ß-lactam antibiotics as initial empirical therapy for serious infections, and otherwise, patients should receive ß-lactam antibiotic monotherapy. Given the challenges associated with studying the clinical effect of different antibiotic strategies on patient outcomes, useful data for subsequent informed clinical testing can be obtained from in vitro models like the hollow-fiber infection model (HFIM). Based on the findings of our HFIM, we propose that the initial use of combination therapy with meropenem and amikacin provides some bacterial killing against carbapenem-resistant P. aeruginosa isolates. For susceptible isolates, combination therapy may only be of benefit in specific patient populations, such as critically ill or immunocompromised patients. Therefore, clinicians may want to consider using the combination therapy for the initial management and ceasing the aminoglycosides once antibiotic susceptibility results have been obtained.


Assuntos
Bacteriemia , Infecções por Pseudomonas , Amicacina/farmacologia , Amicacina/uso terapêutico , Aminoglicosídeos/farmacologia , Aminoglicosídeos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Estado Terminal , Humanos , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa
8.
Antimicrob Agents Chemother ; 66(5): e0214021, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389238

RESUMO

Meropenem-ciprofloxacin combination therapy was compared to the respective monotherapy in a Hollow-Fiber Infection Model against two Pseudomonas aeruginosa isolates. Following initial kill of ∼ 5-logs by each monotherapy, rapid regrowth occurred within 24 h, reaching 108 - 1010 CFU/mL at 120 h. In contrast, combination therapy achieved > 5-log kill within 6 h and suppressed bacterial regrowth throughout. The results suggest that meropenem-ciprofloxacin combination may provide significantly enhanced bacterial killing and resistance suppression against P. aeruginosa.


Assuntos
Infecções por Pseudomonas , Choque Séptico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Humanos , Meropeném/farmacologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Choque Séptico/tratamento farmacológico
9.
Antibiotics (Basel) ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069492

RESUMO

The optimal perioperative duration for the administration of cefazolin and other prophylactic antibiotics remains unclear. This study aimed to describe the pharmacodynamics of cefazolin for a single 2 g dose versus a 24 h course of a 2 g single dose plus a 1 g eight-hourly regimen against methicillin-susceptible Staphylococcus aureus. Static concentration time-kill assay and a dynamic in vitro hollow-fibre infection model simulating humanised plasma and interstitial fluid exposures of cefazolin were used to characterise the pharmacodynamics of prophylactic cefazolin regimens against methicillin-sensitive Staphylococcus aureus clinical isolates. The initial inoculum was 1 × 105 CFU/mL to mimic a high skin flora inoculum. The static time-kill study showed that increasing the cefazolin concentration above 1 mg/L (the MIC) did not increase the rate or the extent of bacterial killing. In the dynamic hollow-fibre model, both dosing regimens achieved similar bacterial killing (~3-log CFU/mL within 24 h). A single 2 g dose may be adequate when low bacterial burdens (~104 CFU/mL) are anticipated in an immunocompetent patient with normal pharmacokinetics.

10.
Future Microbiol ; 16: 521-535, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960818

RESUMO

Aim: To determine the prevalence of extended-spectrum ß-lactamase (ESBL) and metallo-ß-lactamase (MBL)-producing Escherichia coli in South Asia. Methodology: A systematic review and meta-analysis of data published in PubMed, EMBASE, Web of Science and Scopus. Results: The pooled prevalence of ESBL and MBL-producing E. coli in South Asia were 33% (95% CI: 27-40%) and 17% (95% CI: 12-24%), respectively. The prevalence of blaCTX-M type was 58% (95% CI: 49-66%) with blaCTX-M-15 being the most prevalent (51%, 95% CI: 40-62%) variant. The most prevalent MBL variant was blaNDM-1 (33%, 95% CI: 20-50%). Conclusion: This study suggests a high prevalence of ESBLs and MBLs among E. coli clinical isolates. Comprehensive resistance surveillance is required to guide clinicians prescribing antibiotics in South Asia.


Assuntos
Infecções por Escherichia coli/epidemiologia , Escherichia coli/enzimologia , beta-Lactamases/metabolismo , Ásia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genótipo , Humanos , Prevalência , beta-Lactamases/genética
11.
Drugs R D ; 21(2): 203-215, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33797739

RESUMO

BACKGROUND: Even though nebulised administration of amikacin can achieve high epithelial lining fluid concentrations, this has not translated into improved patient outcomes in clinical trials. One possible reason is that the cellular and chemical composition of the epithelial lining fluid may inhibit amikacin-mediated bacterial killing. OBJECTIVE: The objective of this study was to identify whether the epithelial lining fluid components inhibit amikacin-mediated bacterial killing. METHODS: Two amikacin-susceptible (minimum inhibitory concentrations of 2 and 8 mg/L) Pseudomonas aeruginosa isolates were exposed in vitro to amikacin concentrations up to 976 mg/L in the presence of an acidic pH, mucin and/or surfactant as a means of simulating the epithelial lining fluid, the site of bacterial infection in pneumonia. Pharmacodynamic modelling was used to describe associations between amikacin concentrations, bacterial killing and emergence of resistance. RESULTS: In the presence of broth alone, there was rapid and extensive (> 6 - log10) bacterial killing, with emergence of resistance identified in amikacin concentrations < 976 mg/L. In contrast, the rate and extent of bacterial killing was reduced (≤ 5 - log10) when exposed to an acidic pH and mucin. Surfactant did not appreciably impact the bacterial killing or resistance emergence when compared with broth alone for either isolate. The combination of mucin and an acidic pH further reduced the rate of bacterial killing, with the maximal bacterial killing occurring 24 h following initial exposure compared with approximately 4-8 h for either mucin or an acidic pH alone. CONCLUSIONS: Our findings indicate that simulating the epithelial lining fluid antagonises amikacin-mediated killing of P. aeruginosa, even at the high concentrations achieved following nebulised administration.


Assuntos
Amicacina , Pseudomonas aeruginosa , Amicacina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana
12.
Diagn Microbiol Infect Dis ; 100(2): 115329, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714790

RESUMO

This study aims to compare the bacterial killing of once- versus twice-daily nebulized amikacin against Pseudomonas aeruginosa and to determine the optimal duration of therapy. Three clinical P. aeruginosa isolates (amikacin MICs 2, 8, and 64 mg/L) were exposed to simulated epithelial lining fluid exposures of nebulized amikacin with dosing regimens of 400 mg and 800 mg once- or twice-daily up to 7-days using the in vitro hollow-fiber infection model. Quantitative cultures were performed. Simulated amikacin dosing regimens of 400 mg twice-daily and 800 mg once-daily achieved ≥2-log reduction in the bacterial burden within the first 24-hours of therapy for all isolates tested. No dosing regimen suppressed the emergence of amikacin resistance. No difference in bacterial killing or regrowth was observed between 3- and 7-days of amikacin. Amikacin doses of 800 mg once-daily for up to 3-days may be considered for future clinical trials.


Assuntos
Amicacina/administração & dosagem , Amicacina/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Aerossóis , Técnicas Bacteriológicas , Esquema de Medicação , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana
13.
Artigo em Inglês | MEDLINE | ID: mdl-32660986

RESUMO

Given that aminoglycosides, such as amikacin, may be used for multidrug-resistant Pseudomonas aeruginosa infections, optimization of therapy is paramount for improved treatment outcomes. This study aims to investigate the pharmacodynamics of different simulated intravenous amikacin doses on susceptible P. aeruginosa to inform ventilator-associated pneumonia (VAP) and sepsis treatment choices. A hollow-fiber infection model with two P. aeruginosa isolates (MICs of 2 and 8 mg/liter) with an initial inoculum of ∼108 CFU/ml was used to test different amikacin dosing regimens. Three regimens (15, 25, and 50 mg/kg) were tested to simulate a blood exposure, while a 30 mg/kg regimen simulated the epithelial lining fluid (ELF) for potential respiratory tract infection. Data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Whole-genome sequencing was used to identify mutations associated with resistance emergence. While bacterial density was reduced by >6 logs within the first 12 h in simulated blood exposures following this initial bacterial kill, there was amplification of a resistant subpopulation with ribosomal mutations that were likely mediating amikacin resistance. No appreciable bacterial killing occurred with subsequent doses. There was less (<5 log) bacterial killing in the simulated ELF exposure for either isolate tested. Simulation studies suggested that a dose of 30 and 50 mg/kg may provide maximal bacterial killing for bloodstream and VAP infections, respectively. Our results suggest that amikacin efficacy may be improved with the use of high-dose therapy to rapidly eliminate susceptible bacteria. Subsequent doses may have reduced efficacy given the rapid amplification of less-susceptible bacterial subpopulations with amikacin monotherapy.


Assuntos
Amicacina , Infecções por Pseudomonas , Amicacina/farmacologia , Aminoglicosídeos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética
14.
J Antimicrob Chemother ; 75(9): 2633-2640, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32585693

RESUMO

OBJECTIVES: To compare bacterial killing and the emergence of resistance to piperacillin/tazobactam, administered by intermittent versus prolonged infusion (i.e. extended or continuous), for ceftriaxone-resistant Klebsiella pneumoniae clinical isolates in an in vitro dynamic hollow-fibre infection model (HFIM). METHODS: K. pneumoniae 68 (Kp68; MIC = 8 mg/L, producing SHV-106 and DHA-1) and K. pneumoniae 69 (Kp69; MIC = 1 mg/L, producing CTX-M-14) were studied in the HFIM over 7 days (initial inoculum ~107 cfu/mL). Six piperacillin/tazobactam dosing regimens for Kp68 (4/0.5 g 8 hourly as 0.5 and 4 h infusions, 12/1.5 g/24 h continuous infusion, 4/0.5 g 6 hourly as 0.5 and 3 h infusions and 16/2 g/24 h continuous infusion) and three piperacillin/tazobactam dosing regimens for Kp69 (4/0.5 g 8 hourly as 0.5 and 4 h infusions and 12/1.5 g/24 h continuous infusion) were simulated (piperacillin clearance = 14 L/h, creatinine clearance = 100 mL/min). Total and resistant populations and MICs were quantified/determined. RESULTS: For Kp68, all simulated dosing regimens exhibited approximately 4 log10 of bacterial killing at 8 h followed by regrowth to approximately 1011 cfu/mL within 24 h. The MICs for resistant subpopulations exceeded 256 mg/L at 72 h. Similarly, for Kp69, all simulated dosing regimens exhibited approximately 4 log10 of bacterial killing over 8 h; however, only the continuous infusion prevented bacterial regrowth. CONCLUSIONS: Compared with intermittent infusion, prolonged infusion did not increase initial bacterial killing and suppression of regrowth of plasmid-mediated AmpC- and ESBL-producing K. pneumoniae. However, continuous infusion may suppress regrowth of some ESBL-producing susceptible K. pneumoniae, although more data are warranted to confirm this observation.


Assuntos
Klebsiella pneumoniae , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infusões Intravenosas , Testes de Sensibilidade Microbiana , Ácido Penicilânico , Piperacilina , Combinação Piperacilina e Tazobactam
15.
Eur J Hosp Pharm ; 27(e1): e84-e86, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32296512

RESUMO

Objectives: Published in vitro stability data for ceftolozane-tazobactam supports intermittent short duration infusions. This method of delivery is not feasible for many outpatient antimicrobial therapy services that provide only one or two visits per day. This study aimed to assess time, temperature and concentration-dependent stability of ceftolozane-tazobactam in an elastomeric infusion device for continuous infusion across clinically relevant ranges encountered in outpatient antimicrobial therapy. Methods: Ceftolozane-tazobactam was prepared to achieve initial concentrations representing total daily doses for 'renal', 'standard' and 'high' dose schedules in elastomeric infusion devices with a volume of 240 mL. Infusion devices incubated at room and body temperature were serially sampled over 48 hours. Refrigerated infusion devices were sampled over 10 days. Concentrations of ceftolozane and tazobactam were separately quantified using a validated ultra-high performance liquid chromatography-photodiode array method. Results: The greatest loss of ceftolozane occurred at 37°C, however, stability remained above 90% at 24 hours. Tazobactam was more stable than ceftolozane under these conditions. There was minimal loss at 4°C for either component over 7 days. Conclusions: Ceftolozane-tazobactam is suitable for ambulatory care delivered as a continuous infusion via an elastomeric infusion device.


Assuntos
Assistência Ambulatorial/normas , Antibacterianos/análise , Cefalosporinas/análise , Elastômeros/normas , Bombas de Infusão/normas , Tazobactam/análise , Antibacterianos/administração & dosagem , Antibacterianos/química , Cefalosporinas/administração & dosagem , Cefalosporinas/química , Estabilidade de Medicamentos , Elastômeros/química , Humanos , Tazobactam/administração & dosagem , Tazobactam/química , Temperatura
16.
J Pharm Biomed Anal ; 148: 324-333, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29080413

RESUMO

Piperacillin-tazobactam is a beta-lactam/beta-lactamase combination antibiotic used in patients with moderate to severe infection. Dosing of piperacillin-tazobactam requires an understanding of this patient group to maximise the effectiveness of this antibiotic and limit a further emergence of resistant pathogens. This is the first method that measures piperacillin and tazobactam simultaneously, across this range of clinically-relevant biological matrices. The calibration line was linear across the concentration range of 0.5-500µg/mL for piperacillin and 0.625-62.5µg/mL for tazobactam. All validation testing for matrix effects, precision and accuracy, specificity and stability were within 15%. A calibration equivalence study was performed to investigate the suitability of applying calibration curves prepared in an alternative matrix, with a mean bias of -10.8% identified for the application of a calibration line prepared for tazobactam in plasma only. Bias for all other calibration lines prepared in alternate matrices was within the 5% acceptance criteria. The method was successfully applied to a pharmacokinetic study of a critically ill patient receiving renal replacement therapy, with the results included.


Assuntos
Ácido Penicilânico/análogos & derivados , Piperacilina/sangue , Piperacilina/urina , Calibragem , Cromatografia Líquida de Alta Pressão , Estado Terminal , Humanos , Ácido Penicilânico/sangue , Ácido Penicilânico/urina , Combinação Piperacilina e Tazobactam , Plasma/química , Terapia de Substituição Renal/métodos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos , Tazobactam , Urina/química
17.
Perit Dial Int ; 36(4): 421-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26493753

RESUMO

UNLABELLED: ♦ BACKGROUND AND OBJECTIVES: Patients with peritoneal dialysis (PD)-associated peritonitis may be advised to store PD-bags with pre-mixed antibiotics at home, although there is a paucity of antibiotic stability studies in the commonly used icodextrin solutions. The purpose of this study was to assess the stability of various antibiotics in PD-bags when stored at different temperatures over a 14-day period. ♦ METHODS: 7.5% icodextrin PD-bags were dosed with gentamicin 20 mg/L (n = 9), vancomycin 1,000 mg/L (n = 9), cefazolin 500 mg/L (n = 9) and ceftazidime 500 mg/L (n = 9) as for intermittent dosing. Combinations of gentamicin/vancomycin (n = 9), cefazolin/ceftazidime (n = 9), and cefazolin/gentamicin (n = 9) were also tested. Nine drug-free bags were used as controls. Bags were stored in triplicate at 37°C, room-temperature (25°C), and refrigeration (4°C). Antibiotic concentrations were quantified at various time intervals using validated chromatography. Storage duration was considered unstable if the concentration of the antibiotic dropped ≤ 90% of the initial value. ♦ RESULTS: Gentamicin was stable for 14 days at all temperatures. Vancomycin was stable for 4 days at 37°C and for 14 days at both 25°C and 4°C. The gentamicin and vancomycin combination was stable for 4 days at 37°C and for 14 days at 25°C and 4°C. Cefazolin alone was stable for 24 hours at 37°C, 7 days at 25°C, and 14 days at 4°C. Ceftazidime alone was stable for only 6 hours at 37°C, 2 days at 25°C, and 14 days at 4°C. The cefazolin and ceftazidime combination was stable for 24 hours at 37°C, 2 days at 25°C, and 14 days at 4°C. The cefazolin and gentamicin combination was stable for 1 day at 37°C, 4 days at 25°C, and 14 days at 4°C. ♦ CONCLUSIONS: Antibiotics premixed in icodextrin PD-bags have varying stabilities with stability generally least at 37°C and best at 4(o)C, permitting storage for 14 days when refrigerated and prewarming to body temperature prior to administration. Further research confirming the sterility of these antibiotic-containing bags is recommended.


Assuntos
Antibacterianos/química , Soluções para Diálise/química , Estabilidade de Medicamentos , Glucanos/química , Glucose/química , Diálise Peritoneal , Cefazolina , Ceftazidima , Armazenamento de Medicamentos , Gentamicinas , Humanos , Icodextrina , Temperatura , Vancomicina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...